

Building Radio frequency IDentification for the Global
Environment

High level design for Discovery Services

Authors: University of Cambridge, AT4 wireless, BT Research,
 SAP Research

15 August 2007

This work has been partly funded by the European Commission contract No: IST-2005-
033546

About the BRIDGE Project:

BRIDGE (Building Radio frequency IDentification for the Global Environment) is a 13 million
Euro RFID project running over 3 years and partly funded (€7,5 million) by the European
Union. The objective of the BRIDGE project is to research, develop and implement tools to
enable the deployment of EPCglobal applications in Europe. Thirty interdisciplinary partners
from 12 countries (Europe and Asia) are working together on : Hardware development, Serial
Look-up Service, Serial-Level Supply Chain Control, Security; Anti-counterfeiting, Drug
Pedigree, Supply Chain Management, Manufacturing Process, Reusable Asset
Management, Products in Service, Item Level Tagging for non-food items as well as
Dissemination tools, Education material and Policy recommendations.

For more information on the BRIDGE project: www.bridge-project.eu

This document:

This document describes a high-level design for EPC Discovery Services. It starts in section
A with the description of the high level design we have decided. It is important to point out
that despite being a Bridge design, it includes ideas form external sources. Furthermore,
during the discussions within WP2, contact with external companies working on lookup
services has been established and through those a wider understanding of the possibilities
has been obtained. The second section on this deliverable is the result of many discussions
held during the months while the task was active. The document begins by presenting all the
possibilities we have considered and makes an evaluation of them, in order to justify the
choice taken. Different models are presented with different operating mechanisms and
message flows, although they aim for the same basic performance objectives. Finally, the
document is completed with section C, which deals with the selected technology to
implement the storage component in the serial level lookup service, which is a critical
component, whose robustness and reliability of service will impact upon the response times,
management of records, interface to low level components of the network, interface to clients
making queries, and so on.

Disclaimer:

This document results from work being done in the framework of the BRIDGE project. It does
not represent an official deliverable formally approved by the European Commission.

Copyright 2007 by University of Cambridge, AT4 wireless, BT Research, SAP Research. All rights reserved. The
information in this document is proprietary to these BRIDGE consortium members.
This document contains preliminary information and is not subject to any license agreement or any other
agreement as between with respect to the above referenced consortium members. This document contains only
intended strategies, developments, and/or functionalities and is not intended to be binding on any of the above
referenced consortium members (either jointly or severally) with respect to any particular course of business,
product strategy, and/or development of the above referenced consortium members. To the maximum extent
allowed under applicable law, the above referenced consortium members assume no responsibility for errors or
omissions in this document. The above referenced consortium members do not warrant the accuracy or
completeness of the information, text, graphics, links, or other items contained within this material. This document
is provided without a warranty of any kind, either express or implied, including but not limited to the implied
warranties of merchantability, satisfactory quality, fitness for a particular purpose, or non-infringement. No licence
to any underlying IPR is granted or to be implied from any use or reliance on the information contained within or
accessed through this document. The above referenced consortium members shall have no liability for damages
of any kind including without limitation direct, special, indirect, or consequential damages that may result from the
use of these materials. This limitation shall not apply in cases of intentional or gross negligence. Because some
jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, the above
limitation may not apply to you. The statutory liability for personal injury and defective products is not affected.
The above referenced consortium members have no control over the information that you may access through the
use of hot links contained in these materials and does not endorse your use of third-party Web pages nor provide
any warranty whatsoever relating to third-party Web pages.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High Level Design Introduction 3/9 15 August 2007

Introduction

The objectives of the BRIDGE project are twofold. Firstly, it is developing RFID and EPC
Network technology covering different aspects tags, readers, serial level lookup services and
user applications for track and trace. Secondly, Bridge aims to demonstrate and disseminate
through Europe the value of RFID and EPC Network technology and its potential benefit for
various business sectors.

Therefore, there is a clear division between those work packages working on the different
aspects of RFID/EPC technology which may be considered as horizontal activities that
provide the foundations for subsequent development of business oriented work packages
activities, which implement RFID/EPC based solutions in the field and evaluate the benefits
of the technology to improve business processes.

Figure 1: Work Package structure in the BRIDGE project

Among the technical WPs, WP2 focuses on serial level lookup services, which provide track
and trace information of a given tagged item as it moves along the supply chain.

This deliverable, the second issued by WP2, is the result of the work developed on task 2.5
“Discovery Service – High Level Design”. It is important to notice that the development of this
document was not initially contemplated, but through the system requirements elicitation
process the group realized that the task and the document was necessary in order to provide
the prototyping task (T2.3) with suitably detailed documentation to achieve its objectives.

W
P5: A

nti-
Counte

rfe
iti

ng

W
P6: D

ru
g P

edig
re

e

W
P7: S

CM E
uro

pean

Textil
e

W
P8: M

anufa
ctu

rin
g

W
P9: R

eusable
 A

sset

Managem
ent

W
P10: P

ro
ducts

 in
 S

erv
ice

W
P11: N

on-F
ood It

em
-L

evel

WP4: Security

WP3: Serial-Level Supply Chain Control

WP2: Serial-Level Lookup Service

WP1: Hardware Development

WP12: Training Platform, Courseware & Certification

WP13: Dissemination & Adoption Tools

Technical
Development
Clusters

Business
Development
Clusters

Horizontal
Activities

W
P5: A

nti-
Counte

rfe
iti

ng

W
P6: D

ru
g P

edig
re

e

W
P7: S

CM E
uro

pean

Textil
e

W
P8: M

anufa
ctu

rin
g

W
P9: R

eusable
 A

sset

Managem
ent

W
P10: P

ro
ducts

 in
 S

erv
ice

W
P11: N

on-F
ood It

em
-L

evel

WP4: Security

WP3: Serial-Level Supply Chain Control

WP2: Serial-Level Lookup Service

WP1: Hardware Development

WP12: Training Platform, Courseware & Certification

WP13: Dissemination & Adoption Tools

Technical
Development
Clusters

Business
Development
Clusters

Horizontal
Activities

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High Level Design Introduction 4/9 15 August 2007

Figure 2: tasks and timeline in Bridge WP2

Project
start

Q1-07 Q2-07 Q3-07 Q4-07 Q1-08 Q2-08 Q3-08 Q4-08 Q1-09 Q2-09

Project end

Q3-06 Q4-06

Requirements
analysis

Design

Implementation

Integration into existing BIS

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High Level Design Introduction 5/9 15 August 2007

Background
EPCglobal was created with a concrete target: to develop a universal identification system
and an open architecture to provide interoperability in a complex multi-vendor scenario. This
universal identification system is based on the allocation of a unique EPC (Electronic Product
Code) to every item. As a result, the EPC Network[1] is an architecture proposed for enabling
sharing of information about individually identifiable objects among organizations (See Figure
3). Each individual instance of an object can be given a globally unique identifier (unique ID),
enabling each object to be tracked worldwide, by means of automatic identification
technologies such as Radio-Frequency Identification (RFID), as well as linear barcodes or
two-dimensional barcodes. Furthermore, such Auto-ID technologies enable an individual ‘life
history’ of each individual object to be collected efficiently – and this additional data can be
linked to the object via the globally unique ID of each object. With a suitable service-oriented
architecture, the unique ID can be used both to locate source of information, via lookup
services, as well as for extracting relevant information about a particular object from each
source, by using the unique ID as a lookup key within a database.

In the EPC Network, the Electronic Product Code (EPC)[2] serves the role of a globally
unique ID for objects. In fact, as defined in EPC Tag Data Standards, EPC is not a single
identifier scheme but rather a framework for an extensible family of unique identifiers, many
of which are aligned with legacy identifiers, extended where necessary with the addition of a
serial number, to achieve uniqueness. Each member of the family of unique identifiers is
given a unique Uniform Resource Name (URN) prefix. For example, a serialized Global
Trade Item Number (GTIN)[3] begins with the prefix ‘urn:epc:id:sgtin:’ whereas a Serialized
Shipping Container Code (SSCC)[4] begins with the prefix ‘urn:epc:id:sscc:’. In this way, all
EPC identifiers are guaranteed unique, since the URN prefix is unique for each namespace
or identifier scheme, while the remainder of the EPC is unique within that namespace or
identifier scheme. It should be noted that ‘Electronic Product Code’ is something of a
misnomer, since not all EPC identifiers necessarily indicate the product type.

There are considerable efficiencies to be gained within a supply chain resulting from
exchange of more accurate and timely information about flows of goods between trusted
trading partners. For example, many retailers are encouraging the adoption of Auto-ID
technologies in order to reduce out-of-stocks and to improve replenishment processes. The
pharmaceutical industry is considering item-level tagging of pharmaceuticals, together with
electronic pedigree mechanisms in efforts to prevent counterfeit products from entering the
supply chain. The aerospace sector is considering tagging aircraft parts, in order to
automate the gathering of information about faults and maintenance operations, in order to
improve maintenance processes, as well as being able to mine the data to identify
systematic failure patterns across parts of a similar type or exposed to similar conditions, in
order to improve safety and reliability of parts, by making necessary improvements to design
and manufacturing processes.

Sharing of data is of course commercially sensitive, especially information about volumes
and flows of good and relationships between trading partners, which could be used
advantageously by competitor organizations if the necessary security mechanisms and
access controls were absent or compromised.

As a result of such concerns, one of the fundamental design principles for the EPC Network
is that each company should be able to retain control over the data that they collect or
generate within their own organization, i.e. information is decentralized across multiple
organizations[5].

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High Level Design Introduction 6/9 15 August 2007

Figure 3: EPCglobal Network Architecture

EPCIS
The EPC Information Services are a role defined in EPCglobal Network Architecture
Framework [1], which provide for storage and retrieval of filtered and processed information
about different events within the supply-chain. The EPCIS offers two interfaces: one for
query request and the other one for capture operations. The query interface allows trading
partners to query information about any event data stored in the EPCIS-repository together
with business context.

However for such a decentralized architecture, since the complete information about an
individual object may be fragmented across multiple organizations, there is a need for lookup
services for locating all the providers of the fragments of information that constitute the
complete supply-chain or lifecycle history for an object.

The EPCglobal Network Architecture Framework document [1] envisages two
complementary lookup services: the Object Name Services and the Discovery Services.

Object Name Services
Object Name Services (ONS)[7] provide pointers to authoritative information about an object;
this usually means that they provide a pointer to the information services provided by the
manufacturer of the object. Multiple types of services can be included in ONS records,
including not only EPC Information Services (EPCIS) but also product-specific web pages,
web services and other data, such as XML data about products.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High Level Design Introduction 7/9 15 August 2007

The ONS v1.0 standard[7] explains how to query the object name service, given a unique
EPC identifier. It should be noted that the ONS lookup mechanism is currently only defined
for serialized GTIN EPCs. Furthermore, the granularity of ONS resolution is currently limited
to product type, rather than serial-level lookup. i.e. an ONS is not expected to retain distinct
records for two objects of the same product type that only differ in their serial numbers – in
this situation, ONS would only hold records for the product type. Another point to note is that
ONS is currently implemented using the Domain Name System (DNS)[8], using Type 35
Naming Authority Pointer (NAPTR)[9] records to return the information. Queries to ONS are
therefore performed by means of a DNS query for a hostname derived from an EPC – and
no authentication or authorization is required to perform an ONS query. This is clearly not
appropriate for serial-level lookup services for tracking and tracing of objects across the
supply chain

Discovery Services
Discovery Services (DS) are envisaged to provide pointers to multiple providers of
information across a supply chain, to indicate the addresses of information services of all
organizations that hold information about a given EPC – not only the manufacturer. Unlike
Object Name Services (ONS), it is expected that most clients querying a Discovery Service
will be required to provide authentication credentials – and the amount of information
returned in response to their query will be subject to filtering by access control policies based
upon the authentication credentials they supply and the business relationship they have with
each provider of information that registers records (and associated access control policies)
with a Discovery Service.

Discovery Services will need to be designed to accept updates in close to real time from
multiple providers of information across the supply chain or lifecycle of an object (including
organizations that handle the object beyond the point of sale or delivery, e.g. for repair
purposes, maintenance, returns and reverse logistics, as well as recycling, remanufacturing
and other end-of-life processes). Because they store serial-level records, they will need to
be sufficiently scalable to store large volumes of data, possibly up to trillions of records per
year. They will also need to provide for authentication of both information providers
(publishers) and those making queries (clients) and accept and enforce access control
policies that are defined in a manageable way.

The complementary role of ONS and Discovery Services in relation to multiple EPC
Information Services is shown in Figure 4 below:

Figure 4 – Complementary roles of ONS and Discovery Services

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High Level Design Introduction 8/9 15 August 2007

References

1. EPCglobal Architecture Framework Version 1.0.

http://www.epcglobalinc.org/standards
2. EPC - Electronic Product Code. See EPC Tag Data Standards at

http://www.epcglobalinc.org/standards
3. GTIN - Global Trade Item Number. http://www.uc-

council.org/ean_ucc_system/pdf/GTIN.pdf
4. SSCC - Serial Shipping Container Code. http://www.uc-

council.org/ean_ucc_system/pdf/SSCC.pdf
5. Vanalstyne, M., E. Brynjolfsson, and S. Madnick, Why not one big database? -

Principles for data ownership. Decision Support Systems, 1995. 15(4): p. 267-284.
6. EPC Information Services (EPCIS) v1.0 standard, EPCglobal Inc.

http://www.epcglobalinc.org/standards
7. EPCglobal Object Name Service (ONS) v1.0, EPCglobal Inc.

http://www.epcglobalinc.org/standards
8. Domain Name System (DNS). http://www.bind9.net/rfc
9. Mealling, M. and R. Daniel, The Naming Authority Pointer (NAPTR) DNS Resource

Record - RFC 2915. 2000, IETF - Internet Engineering Task Force.
http://www.ietf.org/rfc/rfc2915

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High Level Design Introduction 9/9 15 August 2007

Executive Summary

When the description of work was written it was considered that before implementing any
prototype of the serial level lookup service, requirements from final users would be needed.
For that reason, T2.1 and T2.2 were described and oriented to get those requirements from
relevant actors, and thus, the description of such a service.

As the work on those tasks was progressing, the work group realized that another step would
be needed to ensure success in the prototyping. That task involved consideration of the
different models to be implemented, from a high level point of view, including the design for
data models, interfaces and data flows and messages.

Users (i.e. clients) would use a Discovery Service to find information resources about a given
EPC – but there were several issues still to be resolved:

• From whom will this new service receive this information?

• Would it have access to these sources of information?

• How should privacy and security be handled?

• Will the service be synchronized to the client?

• Will it take days to get an answer?

• What is the granularity of data stored on the serial level lookup service?

• How will the lookup service store the information considering that the potential
number of records can grow rapidly?

There were many other questions without a single answer, and depending on those answers
the design of a serial lookup service would vary significantly.

This document starts in section A with the description of the high level design we have
decided. It is important to point out that despite being a Bridge design, it includes ideas form
external sources. Furthermore, during the discussions within WP2, contact with external
companies working on lookup services has been established and through those a wider
understanding of the possibilities has been obtained. This document, D2.4 section A,
provides the reader with a good understanding of the WP2 proposal and the design that
AIDA and AT4 wireless will follow for implementing the prototype in D2.3.

The second section on this deliverable is the result of many discussions held during the
months while the task was active. The document begins by presenting all the possibilities we
have considered and makes an evaluation of them, in order to justify the choice taken.
Different models are presented with different operating mechanisms and message flows,
although they aim for the same basic performance objectives.

Finally, the document is completed with section C, which deals with the selected technology
to implement the storage component in the serial level lookup service, which is a critical
component, whose robustness and reliability of service will impact upon the response times,
management of records, interface to low level components of the network, interface to clients
making queries, and so on.

Building Radio frequency IDentification for the Global
Environment

High level design for Discovery Services

Section A: High-level Design

Authors: University of Cambridge, AT4 wireless, BT Research,
 SAP Research

15 August 2007

This work has been partly funded by the European Commission contract No: IST-2005-
033546

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 2/54 15 August 2007

Revision History
Version Date Author Summary of Changes

0.1 Nov 2006 –
March 2007

Mark Harrison Design discussion documents, with
comments and feedback from AT4 wireless,
BT, SAP, ETH Zurich

0.8 1
st
 April

2007
Mark Harrison Initial draft

0.9 17
th
 April

2007
Mark Harrison Further revisions, added UML diagrams

0.95 29
th
 June

2007
Mark Harrison Revised UML diagrams, included XML

schema

0.97 2
nd

 July
2007

Mark Harrison Included comments from Trevor Burbridge
(BT) re Access Control Policies and included
discussion of standing queries

1.0 6
th
 July

2007
Mark Harrison Proof – reading of the document

 26
th
 July

2007
Nicholas Pauvre (GS1
France)

Bridge Internal review

Chapter 1.3 Clarification requested about
ONS role in EPC Network

Some lines are in different font type

1.1 02th August
2007

AT4 wireless,
Cambridge

Correction included following review
comments

Note

The views expressed in this document are the views of the joint authors

 and the Community is not liable for any use that may be made of the

 information contained herein.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 3/54 15 August 2007

CONTENTS

Revision History 2

1 Introduction 4

1.1 Purpose of EPCIS 4

1.2 Purpose of Discovery Services 5

1.3 Comparison between the World Wide Web and the EPC Network 9

2 Basic Concepts 10

3 Data Model 12

3.1 Interfaces and data formats to be defined 12

3.2 Avoiding problems encountered in the world wide web 13

3.2.1 Broken hyperlinks and fragility of URL addresses 13

3.2.2 Phishing and fraudulent addresses 13

3.2.3 Implications for the design of discovery services 14

3.3 Response from a Discovery Service 16

3.4 Publishing a record to a Discovery Service 16

3.5 Basic Discovery Service Record 16

3.5.1 Data fields for a record provided by the publisher 17

3.5.2 Additional data fields for a record that are asserted by a Discovery Service 17

3.5.3 Optional metadata fields 18

3.5.4 Handling of optional/missing fields 20

3.5.5 Basic Discovery Service records – UML class diagram 21

3.6 Aggregation Records within a Discovery Service 23

3.6.1 Aggregation Records – UML class diagram 24

4 Publishing to a Discovery Service 26

4.1 Registration of a publisher profile 26

4.2 Publishing a basic record to a Discovery Service 27

4.3 Publishing an aggregation record to a Discovery Service 28

5 Querying a Discovery Service 29

5.1 Query formulation 29

5.1.1 Effect of specifying multiple constraints 31

6 Response from a Discovery Service 32

7 Interface methods 34

7.1 Methods available to both publishers and clients (query interface) 34

7.2 Publisher methods 35

7.3 Query methods 35

8 Support for standing queries 36

8.1 Methods for supporting standing queries 36

8.2 Subscription controls 38

8.3 Special value of trigger URI 38

8.4 Schedule 38

8.5 Push vs Pull 39

9 Access Controls 40

10 XML Schema 42

10.1 Registering a publisher profile 42

10.2 Response to registering a profile 42

10.3 Updating a publisher profile 43

10.4 Response to updating a publisher profile 43

10.5 Publishing basic records or aggregation records 44

10.6 Response to publishing of records 45

10.7 Voiding of published records 45

10.8 Specifying a query 46

10.9 Response to a query 47

10.10 Schema for standing queries 48

10.11 Schema for general interface methods 49

10.12 Auxiliary schema for constrained enumerated lists 50

11 Glossary of Terms 53

12 References 54

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 4/54 15 August 2007

1 Introduction

The primary role for 'Discovery Services' is to provide a mechanism to allow computer
systems and application software to find the network addresses of information resources that
provide more detailed information about an individually identifiable physical object, especially
where those resources are distributed across multiple organizations within the object’s
supply chain or lifecycle history.

Discovery Services are intended to be lightweight and primarily provide links to services such
as EPCIS instances where more detailed event information can be retrieved directly via a
secondary query. In this section, we compare the purpose of EPCIS with the purpose of
Discovery Services and provide an analogy with equivalent roles within the more familiar
World Wide Web.

1.1 Purpose of EPCIS

EPC Information Services (EPCIS) allow organizations to provide a standard query interface
for retrieval of detailed EPC-related information stored within information systems and
databases.

Much of the data provided by EPCIS consists of ‘events’ such as observations of the object
in particular locations within the premises of a company, as well as actions performed on it
(e.g. packing, unpacking, shipping, receiving). In future, this information may also include
sensor measurements associated with the object or its environment (from which a
temperature history may be determined).

The event data at the EPCIS level may be much richer than data provided at the Application
Level Events (ALE) level because the EPCIS data model can answer not only the basic
questions “what was seen?”, “where?”, “when?” – but also “why was it there?”, “how was it,
when it was seen?”, because the EPCIS data model allows for a number of additional
descriptive data fields to be specified per event, to provide annotations about the additional
business context corresponding to each event. These are also known as meta-data fields.

For EPCIS, a query syntax is defined, that allows the client to specify multiple constraints in
order to filter the events to return only those matching all specified constraints. The results
are then formatted according to a standardized schema and returned to the client.

EPCIS supports both one-time queries, in which a synchronous response is returned in reply
to a query, as well as long-running standing queries, where a client wishes to receive all
future updates about new events received by the EPCIS repository, which match the client’s
specified query criteria. In this case, responses are mainly asynchronous and handled via a
callback mechanism.

EPCIS-enabled repositories may be provided for each of several geographic sites in which a
company operates – or a company may choose to provide a global corporate EPCIS
interface, which draws upon data gathered from its multiple geographic sites.

At all times, each company maintains control over its own data and determines who is
allowed to access the data, which records they are allowed to access, and how much detail
to provide to the client making the query.

EPCIS provides a common ‘language protocol’ for inter-company information exchange but
does not compel anyone to ‘speak’ – each organization can choose who to communicate

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 5/54 15 August 2007

with, and how much to say. A standard query interface and data format only helps
organizations understand how to ask the question and understand what is being
communicated in the response.

1.2 Purpose of Discovery Services

Discovery Services play a complementary role to EPC Information Services. They are
intended to provide the links or addresses, to enable a client to locate sources of information
providers and thereby gather more complete information from multiple organizations that
have recorded some information about an object during some stage within its lifecycle. In
other words, they help a client locate multiple providers that the client can then query (via an
EPCIS standard query) for more detailed information.

Discovery Services are not required to hold a replica of each of the detailed events stored
within EPC Information Services across an object’s individual supply chain or lifecycle. It is
sufficient if a Discovery Service provides at least one link to the address of each EPC
Information Service that claims to hold some information about a specific EPC or EPC range,
even though each EPCIS may hold several events relating to a particular EPC.

Given that information about the flow of objects is commercially sensitive, it is unlikely that
companies will provide public or anonymous access to their EPCIS repositories. Therefore,
unlike websites that can be crawled or indexed automatically by search engine software, it is
likely that a Discovery Service will only link to a particular EPCIS if the owner of that EPC
Information Service actively decides to explicitly publish a record to a Discovery Service to
inform that Discovery Service that their EPCIS holds more detailed data for a specified EPC.

In highly regulated industry sectors, it is possible that regional, national or supranational
regulatory bodies may in future require publishing of records to a particular Discovery
Service for various traceability reasons, such as traceability of foods, pharmaceuticals, other
safety-critical products, such as aircraft parts or for planning for emergency situations, such
as pandemics, where it is essential to know the location of stockpiles of vaccines and
medication.

However, normally companies would be free to choose whether or not to use Discovery
Services in much the same way that they can opt into being listed in a telephone directory,
yellow pages directory or other business directory. There may be benefits to a consortium of
trading partners deciding to use a Discovery Service, in order to improve supply chain
visibility and transparency (although it should be noted that this is rarely desired by all
parties) – or to improve efficiencies, such as being able to do more selective product recalls.

Without Discovery Services, the sharing of information is based upon prior knowledge of the
network addresses or URLs for their information services within a cluster of organizations,
although an organization may lack the detailed knowledge about which other organizations
have information about a specific object. This is much like the exchange of phone numbers
on pieces of paper in the absence of any telephone directory or consulting a yellow pages
directory that lacks any categorized partitioning of the entries.

Discovery Services can be implemented as directory services - but unlike a telephone
directory, they are concerned with highly fragmented sources of data and highly dynamic
links between those fragments. The 'trace' or trail of previous custodians for a given object
might be completely unique to that particular object - and might never be repeated exactly for
other objects of the same type nor fully known in advance when the object begins its journey.

In a sense, Discovery Services can provide an element of robustness or redundancy to the
process of gathering information, since their directories can return a list of links to multiple

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 6/54 15 August 2007

providers, whereas in their absence, the client would need to locate the manufacturer’s
EPCIS (e.g. via on ONS query) and then attempt to follow onward links from one
organization to the next, if this information was indeed provided by the EPCIS. The major
vulnerability of the ‘link traversal’ approach is that if the EPCIS of any of the intermediate
parties were unavailable (e.g. due to temporary power/connectivity outage or permanent
cessation of trading), it may become impossible to navigate the missing onward links to
downstream parties. If each organization publishes a link to a Discovery Service, then we
avoid the risk of a single point of failure within the supply chain, provided of course that each
Discovery Service itself has guaranteed availability; in this situation all other organizations
remain reachable. These different approaches are illustrated in Figure 1.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 7/54 15 August 2007

Figure 1. With a daisy-chain or ‘link traversal’ approach (a), a client follows links from one
company to the next but may not be able to track beyond a company whose information
service is unavailable. With a directory approach (b), a client able to locate a Discovery
Service can directly request the links to multiple information services that provide data for a
specific object. Even if one company is unavailable, the link information continues to be
provided by a Discovery Service, ensuring that downstream organizations can still be
reached even if an intermediate organization is temporarily or permanently unreachable.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 8/54 15 August 2007

In order to gather complete lifecycle information from the fragmented sources, Discovery
Services need to provide 1-many links associating each individual serialized object with one
or more information providers (or more specifically, the network addresses of those
providers' information services).

The total volume of traceability information that Discovery Services may need to store is the
product of three factors, namely:

• the number of additional individual objects being tracked per year

• the number of custodians for each individual object

• the retention time for the Discovery Service records associated with a particular
object

The retention time for records Discovery Services may vary depending on the type of object
and the industry sector to which it belongs:

• For tracking of shipments, the records might only need to be stored while the
shipment is in transit and has not yet reached its final customer (e.g. a few days to a
few weeks)

• For some objects (e.g. consumer goods/retail sector), the primary interest may be
tracking from manufacturer to point of sale (e.g. a few days to a few months)

• In some sectors (e.g. pharmaceuticals), regulatory guidelines may require records to
be retained for several years beyond the point of dispensing.

• In other sectors (e.g. aerospace parts), the lifecycle up to the point of delivery is only
the initial phase of the lifecycle of the part - and there can be significant interest in
tracking the part (and its sequence of custodians and information providers)
throughout its active service life, which may be up to 30 years for some parts.

One situation where tracking of an object may become more difficult is if its own identity
becomes unreadable for a period of time. Examples of this situation include:

• barcoded components and sub-assemblies being installed within a composite product
and subsequently obscured from view

• objects tagged with passive RFID tags being loaded within large metal shipping
containers or vehicles during transit, in the situation where the container or vehicle is
not equipped with the ability to read its contents

• bulk product with a unique identifier being broken down into a number of smaller
objects (with their own unique IDs) for downstream distribution / end-user
consumption.

• re-labelling of product with a new identifier

In these situations, it may be appropriate to record aggregation events within the EPCIS of
the organization that causes this change of aggregation. It may also be helpful to be able to
record an aggregation record also at the Discovery Service layer, to provide for robust end-
to-end tracking in the event of non-availability of the EPCIS of the organization that recorded
the change of aggregation. Our design for Discovery Services allows organizations to
choose to publish an aggregation record and provides some additional optional query
parameters, which a client may use to select which aggregation records are of interest. Note
that in the case of aggregation records within the Discovery Service, additional parent/child
and action information will be provided in addition to the usual serviceAddress URL and

serviceType data. It is not expected that Discovery Services will automatically perform any
recursive queries or proxy queries for identities other than the one specified by the client; i.e.
the Discovery Service is not required to switch to tracking the parent / children nor have the

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 9/54 15 August 2007

‘intelligence’ to attempt this. Such a role may be handled by tracking models developed in
BRIDGE WP3 but are outside the scope of basic Discovery Services in BRIDGE WP2.

1.3 Comparison between the World Wide Web and the EPC
Network

Table 1 provides an analogy between the components of the EPC Network and the
corresponding components of the World Wide Web.

Purpose World Wide Web EPC Network
Primary key for searching for information keyword EPC

Provides a list of URL links to sources of
more detailed information

Search Engine Discovery Services

Provides detailed information, usually
from one information provider or company

Website EPC Information Services
(EPCIS)

URL to allow computer to connect to a
particular information resource

Website address Address of an EPC
Information Service
(EPCIS)

Assists the client in retrieving information
from directories and various information
resources – and may provide
visualization of the data (or a derivative of
it) in a human-readable format.

Web Browser Application software

Allow search engines to update and build
their directories of links for a specific
keyword

Crawling/indexing by
search engines

Not applicable – EPC
Information Services
might not provide any
public/anonymous access
– and would need to
explicitly ‘publish’ a record
to a Discovery Service in
order to be found by
clients querying that
Discovery Service

Allow trails of information to be followed Human-machine
interface (e.g. mouse,
keyboard), clicking on
hyperlinks

Machine-machine
interface

Improve signal/noise ratio, convert data
into information, meaning, decisions,
actions

Human brain Human brain +
Machine learning, logic,
rules, patterns

N.B. In this analogy, there is no element of the world-wide web that plays an equivalent role
to that of ONS in the EPC Network.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 10/54 15 August 2007

Basic Concepts
In this section, we introduce the basic concepts and terminology used throughout the
remainder of this document. A Glossary of Terms is provided at the end of this document.

EPC – Electronic Product Code (serves as a unique ID for the object and does not
necessarily indicate product type (e.g. for SSCC codes))

Client - a user who has some access rights to query a DS for records from within a restricted
set of records

Publisher - a user who has some access rights to publish new records to a DS, but where
the published records in some way identify the publisher and the supply chain within which
those records belong.

User - generic term consisting of both clients and publishers

Discovery Service Record - a single tuple of information that represents a link between an
EPC and the URL address of a relevant EPCIS/DS, together with an indication of the
ServiceType and additional metadata fields such as (eventTime, recordTime and other meta-
data as deemed appropriate). Note that each record is provided by at most one publisher;
subsequent custodians of the object may publish additional records that share the same EPC
but are distinct records, rather than extensions of an existing record. This approach makes it
easier to enforce immutability of records, since each record is published under the authority
of a single organization and can be digitally signed by that organization, independently on
any other records within a particular Discovery Service.

Trace History - a list of URLs of EPCIS/DS services for the specified object, extracted from
all Discovery Service records that share the specified EPC.

Query – the act of requesting information from a Discovery Service, usually by specifying an
EPC of interest and providing the user’s authentication credentials, and optionally additional
constraints. Also refers to the query message sent to a Discovery Service to request
information.

Query response – the information provided by a Discovery Service in response to a query.
This typically consists of a subset of information extracted from multiple Discovery Service
Records all concerned with the specified EPC. At a minimum, the query response provides a
set of links to additional EPCIS services and perhaps also to additional Discovery Services.

Publish – the act of creating or adding a new record to a Discovery Service.

Figure 2 – a graphical representation of the relationship between clients, publishers, records
and trace history.

Mutual Authentication - a process by which the authenticity of the identity of the user is
verified by the Discovery Service and the authentic identity of the Discovery Service is
verified by the user.

Authorization - a process in which the Discovery Service checks a user's entitlement to:

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 11/54 15 August 2007

1) interact in any way with the Discovery Service interfaces for query, publishing and
subscription (standing queries)

2) membership of particular supply chains or supply chain fragments hosted on that
particular Discovery Service

3) membership of particular 'clusters' or 'privileged trading partner groupings' within supply
chains or product lifecycles.

Access Control - a mechanism that is used to ensure the privacy of Discovery Services to a
appropriate authenticated authorized users.

Access Control Policy – a set of rules that govern whether a specific user is permitted to
query a specific Discovery Service record – or whether they are allowed to publish (create)
new records within a Discovery Service for a particular object or EPC.

Supply Chain - A supply chain consists of multiple users who are involved in the lifecycle of
a product, normally from its point of manufacture (but possibly also including suppliers of
components and raw materials) through to its point of sale/dispensation/delivery to customer
(and possibly extending beyond this point to include after-sales / in-service repair operators,
after-life recovery etc.). The extended supply chain may also consist of other parties (e.g.
insurance companies) who never 'touch' the physical part - but nevertheless hold records
relevant to it.

Cluster - A subset of one or more organizations within a supply chain that have a trusting
business relationship and agree to sharing of information that is more detailed (or more
privileged) than the information that is available to ordinary members of a supply chain.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 12/54 15 August 2007

2 Data Model
In this section, we discuss the details of the data fields that may be included within Discovery
Service records, as well as the interfaces to the Discovery Services, their methods and input
parameters and the resulting information provided in response.

2.1 Interfaces and data formats to be defined
Figure 3 shows the relationship between the interfaces of a Discovery Service and the
interfaces of EPC Information Services. Both have an interface though which new events or
records can be added (i.e. the EPCIS Capture Interface and the DS Publisher Interface).
Both also have a query interface, through which information can be retrieved (i.e. the EPCIS
Query Interface and the DS Query Interface).

However, whereas the EPCIS returns a filtered set of EPCIS events in response to a query,
our proposal is that it may not be appropriate for a Discovery Service to return an appropriate
selection of its internal DS records in their entirety – but rather, it should extract a time-
ordered list of the URLs and corresponding ServiceType fields from those records and return
these as the response to Discovery Service queries. This is illustrated in Figure 3 below.

Fig. 3. – Interfaces and data formats to be defined for Discovery Services

From a functional perspective, there is a data class (1) to be defined for the internal record
held by the Discovery Service – and additionally three message formats to be defined, (2),
(3), (4). It is important to note that these four data structures, in particular (1), (2) and (4) are
not identical to each other. Although (1) and (2) may be very similar, the internal data record
(1) should also include a timestamp to indicate when the Discovery Service received the
record (i.e. recordTime). In addition, a publisher profile (5) is used to store the URL of the

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 13/54 15 August 2007

serviceAddress, to avoid embedding this information in each record – and to allow flexibility
to change the serviceAddress, should the need arise, as discussed in section 3.2

2.2 Avoiding problems encountered in the world wide web
Two serious problems faced by users of the World Wide Web are broken hyperlinks and
phishing or fraudulent addresses.

2.2.1 Broken hyperlinks and fragility of URL addresses

A hyperlink is considered to be broken if the URL address fails to resolve to the expected
information resource. Often, an HTTP 404 ‘Page Not Found’ error is displayed. Hyperlink
information is very fragile and easily broken unless website developers take due care to
ensure that resources are provided with permanently reachable addresses. Some of the
reasons for broken hyperlinks include:

• Non-renewal of domain names

• Change of domain name due to company takeovers, consolidation, de-mergers and
re-branding

• The link stops working due to a reorganization of the path names within an
organizational website (e.g. directory hierarchies)

• Changes to the technology used for server-side delivery of pages (e.g. switching
between CGI, ASP, PHP, JSP, etc.)

• Use of filename suffixes (e.g. .htm, .asp, .php. .jsp) and inconsistent use thereof

• Deliberate withdrawal of information

• References to bulletin boards, message lists, blogs etc. in which older messages are
archived to different addresses – or deleted

• The address needs to be changed because it has been compromised, e.g. via
persistent Denial-of-Service attacks

In the context of Discovery Services, some of the same reasons may also affect the
permanence of the URL address for an EPCIS service. In much the same way that it is
difficult to correct all the broken hyperlinks on the web, it may be difficult to systematically
change the URL address for a particular EPCIS service for all affected records, especially if
the URL address is embedded within a digitally signed record provided by the publisher.

2.2.2 Phishing and fraudulent addresses

Phishing is a term widely used to refer to the use of fraudulent web addresses for the
purposes of deception, often for the purposes of harvesting information from the user, such
as user-IDs and passwords for various accounts, internet banking details, etc. This is much
more sinister than broken hyperlinks, since users will often be presented with a website or
web page that superficially resembles a familiar page, although any data that the user
supplies via a form on that page is transmitted to a potentially malicious user rather than the
genuine organization that the user believed that they were interacting with.

In the context of Discovery Services, this highlights two major issues:

• It is important to protect the privacy of information provided by the client and ensure
that it is not divulged to malicious parties

• It is important to support verification of records published to a Discovery Services by
information providers, in order to exclude malicious parties.

Digital signatures can be used to prove the authorship and authenticity of digitally signed
information, since a digital signature depends both upon the information content and upon
maintaining secrecy of the private key used when signing the information. It is possible to

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 14/54 15 August 2007

verify digital signatures by decrypting the signature with the corresponding public key of the
author and comparing the result with the hashed value of the data, using the hashing and
encryption algorithms that are specified with the digital signature.

It may be desirable for Discovery Services to accept and verify digitally signed records from
publishers – and either to return the original digitally signed record to a client in response to a
query, or in the situation where it is not appropriate to return the original record in its entirety,
to return an indication of whether the Discovery Service itself was able to verify the
authorship and authenticity of the record from which the response is derived.

If digitally signed records are published to a Discovery Service and it is unable to verify the
signature, then the record should be rejected and a signature verification exception should
be raised via the publisher interface.

2.2.3 Implications for the design of discovery services

Given that Discovery Services may hold vast numbers of records relating to a particular URL
address, it may be a good idea to avoid embedding the URL in each of those records. If
each of those records instead contains a pointer or immutable cross-reference ID to a single
publisher profile record, and the publisher profile record in turn contains the serviceType

and URL of the serviceAddress, then it may be much easier to effectively update all

affected records by merely updating the URL of the serviceAddress in the publisher profile
rather than updating each of the affected records. The decoupling of the URL of the
serviceAddress from the record also has a further advantage because the record and the
publisher profile record can both be digitally signed by the publisher – and in the case where
it is necessary to change the address for multiple records, only the publisher profile record
needs to be updated with a new signed copy, rather than updating and re-signing all affected
records.

Furthermore, in the case that the records are digitally signed, such a change need not alter
all the records or invalidate the previous digital signatures, since an immutable cross-
reference identifier (the publisher profile ID) could be embedded within the published record,
instead of embedding a literal URL address of an EPCIS service. Figure 4 indicates the
proposed decoupling of the URL address from the record, instead embedding a permanent
immutable publisher profile ID as a cross-reference to the publisher profile record that holds
the correct URL of the serviceAddress for those records.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 15/54 15 August 2007

Figure 4 – Decoupling of the URL address from a record published to a Discovery Service.
A publisherProfileID serves as an immutable cross-reference for joining to details of service
address and type, which may need to be altered later. This decoupling approach removes
the need to change digital signatures for each Discovery Service record when the service
address URL needs to change.

This decoupling approach is intended to provide flexibility to the publisher. These details
should be hidden from the client’s query interface. Internally, a Discovery Service is still
expected to return the serviceAddress URL and serviceType and should never return the
publisher profile ID to the client. Effectively, the Discovery Service should perform an inner
join between each record and the publisher profile record, joining on the publisher profile ID.

It is expected that many records within a Discovery Service may share the same
serviceAddress URL and that the number of distinct serviceAddress URLs will be much
smaller than the number of distinct records held within a Discovery Service, so it may be
entirely reasonable to maintain a lookup table or indexed map of the associations between a
publisher profile ID and the corresponding serviceAddress URL.

As discussed in the following section 3.3, in our design for Discovery Services, the records
published to a Discovery Service will usually not be returned verbatim to a client’s query –
but rather, they will be used as the basis for constructing a response, returning a subset of
the data fields, such as serviceAddress URL and serviceType. It is therefore appropriate
for a Discovery Service to indicate whether or not it was able to verify the digital signature of
signed records from which the response was assembled. This is indicated via a data field
named Status.

Some publishers may need to specify multiple service addresses – and they may do so by
registering multiple publisher profiles with a Discovery Service and allocating one
serviceAddress URL and serviceType to each publisher profile.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 16/54 15 August 2007

2.3 Response from a Discovery Service
In order to minimize the disclosure of commercially sensitive information, the DS Query
Response (block 4 on Fig. 3) need NOT return the entire set of internal records (block 1 on
Fig. 3) matching the query criteria. Rather, it should extract the ServiceType and

ServiceAddress from the publisher profile corresponding to each record and returns a list of
such tuples, sorted chronologically by default.

In our proposal for Discovery Services, the result set returned to a client in response to a
query will NOT consist of one or more internal DS records – but rather, will consist of a time-
ordered filtered list of information resources, where each information resource consists of the
tuple (ResponseCode, EPC, ServiceType, URL, Status).

Additional data fields held in internal DS records will generally not be communicated back to
the client – but will only be used within the Discovery Service for filtering purposes. The
Discovery Service security policies should specify whether the additional data fields may be
used for the client for search purposes or additionally returned to the client. It is important
that the security policies also cover permitted search criteria in the absence of additional
fields being returned to the client since multiple queries could otherwise be used to infer the
value of such data fields.

2.4 Publishing a record to a Discovery Service
It is proposed that the DS Publishing format should align closely with a subset of the XML
schema proposed for the EPCIS Capture Interface, although it should be understood that the
actual schema used for the Discovery Service may be more restrictive in the sense of
requiring an EPC data field to be specified – and limiting the event types to a subset of those
allowed in the EPCIS data model.

Furthermore, a number of metadata fields of EPCIS events (such as readPoint,
businessLocation) are omitted from our proposed schema for Discovery Service events.
We also omit the eventTimeTimezoneOffset field, since the eventTime field already fully
specifies the timezone in both EPCIS and DS and the eventTimeTimezoneOffset can be
retrieved by the client via a subsequent query to an EPCIS, if specifically required.

Note also that Discovery Service sets the value of the recordTime data field as the time of
receipt of the record by the Discovery Service. For this reason, the schema for publishing
(block 2 of Fig. 3 and section 10.5) will omit the field ‘recordTime’, although the query format
(block 1 of Fig. 3 and section 10.8) may support constraints on recordTime in a very similar
manner to the way in which the EPCIS query interface supports this.

2.5 Basic Discovery Service Record
We assume that each organization that handles a particular EPC publishes a Discovery
Service record in order that the Discovery Service can provide a link to the address of their
EPCIS when queried about that EPC by trusted partners. It should be noted that although an
individual organization may hold several EPCIS events relating to that EPC, they might only
publish a single Discovery Service record in order to establish a link to their EPCIS for this
more detailed event information.

Each time an organization publishes a record to a Discovery Service, a new source of link
information is added to the Discovery Service. At a minimum, an internal Discovery Service
record logically needs to provide the following data fields:

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 17/54 15 August 2007

2.5.1 Data fields for a record provided by the publisher

Data Field Data Type Description
EPC Pure-identity EPC

or Pure-identity
EPC pattern

An EPC or EPC range for the objects in this
record.

ServiceType ServiceTypeID Indicates the type of service provided at the
address. Provides the client with information about
whether the record links to either an EPCIS or to
another Discovery Service. Allowed values are
“EPCIS” or “DS”. Future extensions are allowed

ServiceAddress URL String An address for an information resource linked from
the Discovery Service

Note that in practice, the ServiceType and ServiceAddress may in fact be stored within a
Publisher Profile – and the internal Discovery Service record refers to the ID of a particular
Publisher Profile rather than embedding this information within each record.

2.5.2 Additional data fields for a record that are asserted by a Discovery
Service

Data Field Data Type Description
RecordID Unique ID Used internally by the Discovery Service to provide a

cross-reference mechanism between a record and the
access control policies that govern which clients may
receive it as a result of their queries.

RecordTime Time The timestamp at which the Discovery Service
received this record from the publisher. The
timestamp should be expressed with resolution of 1
second and be timezone qualified, relative to UTC. i.e.

YYYY-MM-DDThh:mm:ssTZD
(e.g. “1997-07-16T19:20:30+01:00”)

PublisherID String Identifies which publisher provided this record. This
could be a globally unique reference to the publisher’s
digital certificate – e.g. the certificate authority’s ID and
the certificate ID or serial number within that certificate
authority.

ServiceTypeID is a string that should indicate whether the URL corresponds to an EPCIS or
a DS. This is analogous to the Service Type field in ONS records – it is merely a helpful clue
for the client application. Allowed values of serviceTypeID are either “EPCIS” or “DS”.

Further allowed values of serviceTypeID may be defined in the future.

recordTime is the date and time when the record was received by a Discovery Service. This
is an internal timestamp recorded by a Discovery Service, which may be used for sorting
records into chronological order (especially if no eventTime is specified). It may also be
used to ensure completeness of responses to standing queries.

The publisher should not specify a recordTime – and any value provided by the publisher

should be ignored by the Discovery Service, since recordTime is an internal timestamp
recorded by the Discovery Service upon receipt of the record.

recordTime should be specified in a format consistent with ISO 8601. See for example the
formats of timestamp strings in http://www.w3.org/TR/NOTE-datetime

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 18/54 15 August 2007

e.g. YYYY-MM-DDThh:mm:ssTZD (eg “1997-07-16T19:20:30+01:00”)

For traceability purposes, a record should also contain a data field, PublisherID – which is
not merely extracted from the body of (2) the record that is published to the Discovery
Service, but rather, is extracted from the authentication credentials when the publisher
authenticates with the Discovery Service before publishing. For example, the publisher
might digitally sign a record before publishing it the Discovery Service. In this case, it may
be useful for the internal Discovery Service record to store the digital certificate within the
internal DS record (1).

Clearly a PublisherID field that has been obtained from a digital signature and verified before
inclusion in the Discovery Service is much more trustworthy than if the Publisher ID were
merely asserted as an unsigned data field within the publisher record (2).

It may even be appropriate for the response (4) from the Discovery Service to indicate
whether or not a particular Publisher ID was verified by that Discovery Service by checking
the digital signature when it received the record from the publisher. For this reason, the data
field ‘Status’ is proposed.

2.5.3 Optional metadata fields

There are two reasons why it may be beneficial for a Discovery Service to support a minimal
number of optional metadata fields:

1) To allow the client querying the Discovery Service to receive a more limited number
of records by using additional metadata fields to constrain (limit) which records are
retrieved according to some criteria.

2) To allow the publisher to use the metadata fields within access control policies as a
way of more precisely specifying which records should be made available to which
client. e.g. a publisher may choose to only share records about shipping with its
customers and only share records about receiving with its suppliers. (See section 9)

2.5.3.1 Optional metadata fields which the publisher may provide:

Data Field Data Type Description
action DSAction A string from an enumerated list. This is used to

indicate how the record corresponds to a particular
stage in the lifecycle of the object. For basic records,
allowed values are “LINK” (default), “CREATE”,
“CLOSE”, “DESTROY”

businessStep BusinessStepID A vocabulary whose elements denote steps in the
business process. e.g. an identifier that denotes
“shipping”.

disposition DispositionID A vocabulary whose elements denote a business state
of the object after the event happened. e.g. an identifier
that denotes “available for sale” or “received”.

eventTime Time The timestamp asserted by the publisher for this record.
The timestamp should be expressed with a resolution of
1 second and be timezone qualified, relative to UTC. i.e.
YYYY-MM-DDThh:mm:ssTZD
(e.g. “1997-07-16T19:20:30+01:00”)

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 19/54 15 August 2007

BusinessStepID is a vocabulary whose elements denote steps in the business process. An
example would be an identifier that denotes “shipping”. The business step field specifies the
business context of an event – i.e. what business process was happening that caused the
event to be captured. In EPCIS, the BusinessStepID identifiers are usually expressed as
URN strings within a standardized namespace (that may be specific to a particular industry
sector).

DispositionID is a vocabulary whose elements denote a business state of the object after
the event happened. An example would be an identifier that denotes “available for sale” or
“received”. In EPCIS, DispositionID identifiers are usually expressed as URN strings
within a standardized namespace (that may be specific to a particular industry sector).

eventTime is the date and time asserted by the publisher of the record for the appropriate

timestamp corresponding to the record. eventTime allows some real-world ordering, but

cannot be trusted, whereas recordTime has the opposite characteristics.

eventTime should be specified in a format consistent with ISO 8601. See for example the
formats of timestamp strings in http://www.w3.org/TR/NOTE-datetime
e.g. YYYY-MM-DDThh:mm:ssTZD (eg “1997-07-16T19:20:30+01:00”)

For basic Discovery Service records, we propose that the action field takes different values
from those allowed for EPCIS. We define the following allowed values of the action field:

CREATE – used only when an object is physically created for the first time

LINK – (default value, assumed if no action is explicitly specified) – indicates a link

CLOSE – used to indicate that the chain of custody for the forward logistics has
reached its normal final end point (e.g. point of sale / dispensing). (Useful
for assisting in detection of duplicate EPC records, due to counterfeiters
using discarded packaging to re-insert fake goods into the forwards supply
chain). Normally, only genuine reverse-logistics processes should result in
new DS records following a DS record with an action marked ‘CLOSE’.

DESTROY – used only when the physical object has actually been destroyed.
 Normally, no further records should follow a DS record with an action

marked ‘DESTROY’.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 20/54 15 August 2007

2.5.4 Handling of optional/missing fields

A Discovery Service is not required to store each of these optional metadata fields in its
internal records, although it should record a recordTime of the time when it received a
record from a publisher.

In the case where a client’s query to a Discovery Service involves a constraint on a data field
that was either not provided by the publisher or not stored / not supported by the Discovery
Service, then this constraint shall be ignored for the purposes of filtering the records that are
returned as the results to the client’s query.

It may be of benefit to publishers and clients of the Discovery Service to provide an interface
query method that lists which of these optional metadata fields are supported and stored if
published to a Discovery Service. For example, a Discovery Service may provide a method
getSupportedOptionalFields() that returns an XML response such as:

<?xml version="1.0" encoding="UTF-8"?>

<ds_supportedOptionalFields>

 <string>action</string>

 <string>businessStep</string>

 <string>disposition</string>

 <string>eventTime</string>

</ds_supportedOptionalFields>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 21/54 15 August 2007

2.5.5 Basic Discovery Service records – UML class diagram

Figure 5 – UML class diagram for basic records within a Discovery Service, showing which data fields contribute to the various message /
record formats (1), (2), (4) shown in Figure 3. The numbering and colour-coding of the dashed rounded outlines corresponds to the message
formats numbered 1, 2, 4 and 5 in Figure 3. Note that basic records do not provide any details about significant aggregation and
disaggregation events. (See Fig. 6 for a UML class diagram for aggregation records)

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 22/54 15 August 2007

2.5.5.1 Fields appearing only in a response from the Discovery Service

Status StatusID Indicates the availability of information and whether the

Discovery Service was able to verify the identity of the
publisher of this record.

• OK-Verified indicates that the publisher
supplied a digital signature that could be
verified

• OK-Unverified indicates that no digital
signature was supplied

• Access Denied indicates that a node exists but
is not providing further information.

Note that access control policies should also allow a
node to remain silent to particular clients and not even
reveal that it exists.

Note that a Discovery Service should only store
records that are either signed – or records which were
digitally signed and for which the signature has been
verified; if a record is digitally signed but cannot be
verified by a Discovery Service, then this should be
rejected as a signature verification exception via the
publisher interface.

NodeRef String A temporary unique ID that can be used to enable a
client to send further credentials and an enquiry to a
publisher that is initially denying access.

The fields Status and NodeRef are provided per record in the response from a Discovery
Service but are not considered to be part of the internal record held within a Discovery
Service, since they depend on the access privileges of the client as set by the publisher of
each record – and therefore vary, depending on which client is making the query. They are
for information only and cannot be constrained using the usual query parameters described
later.

Status is used to indicate whether or not a particular information provider (that exists for a
given EPC) was willing to provide information to a particular client. It returns a status code,
much along the same principles as a web-server returns an HTTP status code. (See
reference for HTTP 1.1). We proposed that the status ID should take one of the following
three values:

OK-Verified The node reveals its address and the Discovery Service verified the

Publisher ID by checking the digital signature of the record published by the
publisher at the time it was received.

OK-Unverified The node reveals its address to the client – but the Discovery Service was
not able to verify the Publisher ID using a digital signature

Access Denied The node exists but chooses not to reveal its address to this client for this
EPC. See NodeRef for a possible negotiation mechanism.

It may be necessary to define additional permitted values of Status in a later version of this
design.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 23/54 15 August 2007

NodeRef is an opaque string that is used as a reference or ‘handle’ so that the Discovery
Service and Client can refer to a particular node that is denying access, without the
Discovery Service needing to reveal the identity or URL address of the node that wishes to
remain anonymous to the client. This has the benefit of indicating to the client whether a
complete set of links has been returned – and provides for future extension features,
whereby a client that is initially denied access may send further credentials, an updated
digital certificate to replace an expired one, as well as further details of their request to the
anonymous node that denies access, by sending the request to the DS and specifying the
NodeRef as the intended recipient. This only works if the DS is prepared to act as a relay to
forward such a client request onwards to the node concerned and if it holds relevant
information such as a contact e-mail address for each node or Publisher Profile. To facilitate
this optional feature, the Publisher Profile is allowed to include an optional e-mail address as
contact information, which a Discovery Service may use to forward such requests to a
publisher, but which a Discovery Service should not reveal to any client.

2.6 Aggregation Records within a Discovery Service
The EPCIS data model already provides for an AggegationEvent subtype, which can be
used to record observations of aggregates as well as explicit changes of aggregation
involving an object.

Aggregation is a process in which one or more ‘child’ objects are aggregated to a ‘parent’
object. For example the ‘child’ objects may be the contents and the ‘parent’ may be a
container.

Disaggregation is the reverse process, in which one, several or all ‘child’ objects are
disaggregated from the ‘parent’ object.

As discussed in Section 1.2, there may be benefit in allowing aggregation records to be held
in a Discovery Service, to avoid a situation where it is impossible to track an object further
because of unavailability of the EPCIS of the company that recorded the essential
AggregationEvent.

Our design proposal therefore supports a data model for optional aggregation records within
the Discovery Service, although it is for each publisher to choose whether or not to use
these.

Figure 6 shows a modified UML diagram for aggregation records.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 24/54 15 August 2007

2.6.1 Aggregation Records – UML class diagram

Figure 6 - UML class diagram for aggregation records within a Discovery Service. The numbering and colour-coding of the dashed rounded
outlines corresponds to the message formats numbered 1, 2, 4 and 5 in Figure 3.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 25/54 15 August 2007

The permitted values of the Action field in our Discovery Service AggregationRecords are

closely aligned with the values and meanings permitted for AggregationEvents within EPCIS,
as follows:

ADD the EPCs in the childEPCs list have been added to the parentID. This is used

when new children are added to an existing aggregate, as well as when a new
aggregate is created for the first time.

OBSERVE The event represents neither adding nor removing children from the

aggregation. The observation may be incomplete: there may be children that
are part of the aggregation but not observed during this event and therefore not
included in the childEPCs field of the AggregationRecord; likewise, the parent
identity may not be observed or known during this event and therefore the
parentID field be omitted from the AggregationRecord.

DELETE The EPCs named in the childEPCs list have been disaggregated from the

parent during this event. This includes situations where a subset of children are
removed from the aggregation, as well as when the entire aggregation is
dismantled. The list of childEPCs may be omitted from the

AggregationRecord, which means that all children have been disaggregated.
(This permits disaggregation when the event capture software does not know
the identities of all the children.)

It should be noted that unlike basic records in a Discovery Service, the parentID, childEPCs

and action fields will be included as part of the response to a query, if they are specified by
the publisher, although these fields are subject to any filtering by the publisher’s access control
policies enforced by the Discovery Service to suppress any EPCs which the client is not
authorized to see.

However, both parentID and childEPCs are optional fields, so it is also permissible for a

publisher to publish an aggregation record in which only the action field and one EPC within

either the parentID or childEPCs field is specified – and thereby indicate that either an

aggregation or a disaggregation event happened (depending on whether action=ADD or

action=DELETE, respectively), without providing details of other EPCs involved in the
aggregation/disaggregation event; the client would then need to make a further query directly
to the EPCIS of that publisher in order to retrieve the full details via a query for
AggregationEvents involving that EPC.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 26/54 15 August 2007

3 Publishing to a Discovery Service

3.1 Registration of a publisher profile
As discussed in section 3.2.3, the first step is for the publisher to register a publisher profile
with a Discovery Service, in which a serviceAddress and serviceType are defined.
For example, a publisher may register a profile by sending an XML message of the format
shown below:

<?xml version="1.0" encoding="UTF-8"?>

<ds_registerProfile>

 <serviceType>EPCIS</serviceType>

 <serviceAddress>http://www.factorycorp.com/gateway/epcis.wsdl</serviceAddress>

</ds_registerProfile>

In response, a Discovery Service should respond with a message that is similar except for the
addition of an additional element, publisherProfileID, which is a unique permanent opaque
string generated by that Discovery Service, which the publisher can cache and later embed
within their own records subsequently published to that Discovery Service, whenever the
publisher wishes to specify that particular serviceAddress for a record. An example of the
corresponding response is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<ds_registeredProfileResponse>

 <serviceType>EPCIS</serviceType>

 <serviceAddress>http://www.factorycorp.com/gateway/epcis.wsdl</serviceAddress>

 <publisherProfileID>7D4BA819CE274985F36F</publisherProfileID>

</ds_registeredProfileResponse>

(The publisherProfileID should be kept private. The publisher may use application
software which maintains an internal cache or the lookup table between the
publisherProfileID and the corresponding serviceAddress, for the convenience of the
publisher.)

If the publisher ever needs to update the serviceAddress and serviceType for an existing
profile, they can post a message specifying both the old and new serviceAddress and
serviceTypes. This message should be formatted as below:

<?xml version="1.0" encoding="UTF-8"?>

<ds_updateProfile>

 <previous>

 <serviceType>EPCIS</serviceType>

 <serviceAddress>http://www.factorycorp.com/gateway/epcis.wsdl</serviceAddress>

 </previous>

 <new>

 <serviceType>EPCIS</serviceType>

 <serviceAddress>http://www.newcorp.com/partners/epcis.wsdl</serviceAddress>

 </new>

 <publisherProfileID>7D4BA819CE274985F36F</publisherProfileID>

</ds_updateProfile>

Note that it is necessary to specify the previous serviceAddress and serviceType in addition

to the publisherProfileID, in order to reduce the risk of unauthorized updates.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 27/54 15 August 2007

3.2 Publishing a basic record to a Discovery Service
Following the successful registration of a small number of one or more publisher profiles, for
the serviceAddress URLs that the publisher will use, an organization may then publish a new
record to a Discovery Service for a single EPC or a list of EPCs. In our design for Discovery
Services, EPC pure identity patterns containing wildcards are not accepted within records
published to the Discovery Service, although they may be used within query parameters. EPC
pure-identity patterns are defined in EPCglobal Tag Data Standards v1.3

An example of an unsigned record published to a Discovery Service is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<ds_publishrecord>

 <ds_header>

 <TTL>P1Y2M3DT10H30M<TTL>

 <ACP></ACP>

 </ds_header>

 <ds_record>

 <publisherProfileID>7D4BA819CE274985F36F</publisherProfileID>

 <action>LINK</action>

 <eventTime>2005-04-03T20:33:31.116-06:00</eventTime>

 <epcList>

 <epc>urn:epc:id:sgtin:0614141.107340.1</epc>

 <epc>urn:epc:id:sgtin:0614141.107340.2</epc>

 <epc>urn:epc:id:sgtin:0614141.107340.7</epc>

 <epc>urn:epc:id:sgtin:0614141.107340.8</epc>

 </epcList>

 <bizStep>urn:epcglobal:epcis:bizstep:fmcg:shipped</bizStep>

 </ds_record>

</ds_publishrecord>

The record is asserting that at a particular time, a service holds information about four
specified EPCs. The URL serviceAddress and serviceType are not embedded directly but

are specified within the publisher profile corresponding to the specified publisherProfileID
that is embedded within the record (see previous section 4.2).

A header block may also be provided, in order that the publisher can provide additional
information about the record. The header may include information about a time-to-live or
retention time, include a reference to an access control policy and may also provide a digital
signature for the record.

In the example above, a time-to-live is specified as 1 year, 2 months, 3 days, 10 hours and 30
minutes beyond the time at which the record is published to that Discovery Service.

Upon successful publication, a Discovery Service should respond with an acknowledgment
message that specifies the internal recordID that it assigned. An example of this is shown
below:

<?xml version="1.0" encoding="UTF-8"?>

<ds_publishedRecordResponse>

 <recordID>2191AB74BE581FC33C</recordID>

</ds_publishedRecordResponse>

If a publisher later needs to mark as invalid (void) a previously published record, the publisher
may use the method voidRecord(recordID, reason), as defined in Section 10.7. The
recordID may also be used by methods that allow extension of the time-to-live value for a
specific record.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 28/54 15 August 2007

3.3 Publishing an aggregation record to a Discovery Service
Publishers are not required to publish aggregation records to Discovery Services – and not all
Discovery Services are required to support storage of aggregation records. However, if a
particular Discovery Service does support aggregation records, a publisher may optionally
publish an aggregation record, in order to record important changes of aggregation directly
within a Discovery Service, rather than only maintaining the aggregation event within their own
EPCIS.

An example of an unsigned aggregation record published to a Discovery Service is shown
below:

<?xml version="1.0" encoding="UTF-8"?>

<ds_publishrecord>

 <ds_header>

 <TTL>P1Y2M3DT10H30M<TTL>

 <ACP></ACP>

 </ds_header>

 <ds_aggregationRecord>

 <publisherProfileID>7D4BA819CE274985F36F</publisherProfileID>

 <action>ADD</action>

 <eventTime>2005-04-03T20:33:31.116-06:00</eventTime>

 <bizStep>urn:epcglobal:epcis:bizstep:fmcg:shipped</bizStep>

 <parentID>urn:epc:id:sgtin:0614141.107340.1</parentID>

 <childEPCs>

 <epc>urn:epc:id:sgtin:0614141.107340.2</epc>

 <epc>urn:epc:id:sgtin:0614141.107340.7</epc>

 <epc>urn:epc:id:sgtin:0614141.107340.8</epc>

 </childEPCs>

 </ds_aggregationRecord>

</ds_publishrecord>

Note that in this example aggregation record, the publisher asserts that the three specified
childEPCs have been aggregated to a parent ID at the time of shipping.

Upon successful publication, a Discovery Service should respond with an acknowledgment
message that specifies the internal recordID that it assigned, as explained previously in
section 4.2.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 29/54 15 August 2007

4 Querying a Discovery Service

4.1 Query formulation
It is proposed that the DS Query format should closely align with the syntax proposed for
EPCIS queries, although it should be understood that all DS queries shall specify an EPC or
EPC pure identity pattern in the mandatory MATCH_anyEPC query parameter.

The EPCIS query syntax allows a client to constrain the values of one or more data fields of an
event to be required to have a particular value, range or to be one of a number of alternatives
from a list, in order for that event to be returned as part of the results.

Queries to a Discovery Service for a list of links usually require the unique ID or EPC of the
object to be specified.

The simplest query to a Discovery Service is therefore poll(MATCH_anyEPC=<epc>), which
returns all links for a particular EPC, which the client is allowed to receive.

However, the client may wish to receive a subset of these records that match particular
constraint criteria specified by the client. Further optional query parameters may also be
specified to provide additional constraints on the results to be returned.

In this case, the query to a Discovery Service becomes
poll(MATCH_anyEPC=<epc> [,additional constraints]).

Note that this approach is subtly different from the EPCIS query interface, in which it is
perfectly valid to request all events – or to specify only constraints other than a specific EPC;
for example, a client might query an EPCIS for all events with business step = ‘shipping’
without specifying which objects are of interest; such a query is not allowed in our design for
Discovery Services – there is always a mandatory MATCH_anyEPC constraint in our Discovery

Service design, whereas in EPCIS, even the MATCH_anyEPC constraint is optional.

In the case of Aggregation records within a Discovery Service, any records will be considered
to match if either the parentID or any of the childrenEPCs match the EPC specified as the

mandatory MATCH_anyEPC query parameter. If a client wishes to be specific about whether
they want to select only records for which the EPC matches only the parent or only one of the
children, they may also include the constraints MATCH_parent or MATCH_childEPC as

additional parameters within the query in addition to the mandatory MATCH_anyEPC query
parameter.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 30/54 15 August 2007

The following constraints are proposed as useful for filtering of DS records:

Constraint Name Constraint

Value
Type

Required
?

Meaning

MATCH_anyEPC List of
String

Yes The result will only include records where the value
of any of the epcList, parentID or childEPCs

field matches one of the specified values.
MATCH_parentID List of

String
No If specified, the result will only include aggregation

records where the value of the parentID field

matches one of the specified values.
MATCH_childEPC List of

String
No If specified, the result will only include records where

the value of any of the epcList or childEPCs field

matches one of the specified values.
recordType List of

String
No If specified, the result will only include records whose

type matches one of the types specified in the
parameter value. Each element of the parameter
value may be one of the following strings:
DSRecord, DSAggregationRecord

GE_eventTime Time No If specified, only records with eventTime greater

than or equal to the specified value will be recorded
in the result. If omitted, records are included
regardless of their eventTime (unless constrained

by the LT_eventTime parameter)
LT_eventTime Time No If specified, only records with eventTime less than

the specified value will be recorded in the result. If
omitted, records are included regardless of their
eventTime (unless constrained by the

GE_eventTime parameter)
GE_recordTime Time No If specified, only records with recordTime greater

than or equal to the specified value will be recorded
in the result. If omitted, records are included
regardless of their recordTime (unless constrained

by the LT_recordTime parameter)
LT_recordTime Time No If specified, only records with recordTime less than

the specified value will be recorded in the result. If
omitted, records are included regardless of their
recordTime (unless constrained by the

GE_recordTime parameter)
EQ_action List of

String
No If specified, the result will only include records where

the value of the action field matches one of the

specified values. If omitted, records are included
regardless of their action field.

EQ_bizStep List of
String

No If specified, the result will only include records where
the value of the bizStep field matches one of the

specified values. If omitted, records are included
regardless of their bizStep field.

EQ_disposition List of
String

No If specified, the result will only include records where
the value of the disposition field matches one of

the specified values. If omitted, records are included
regardless of their disposition field.

e.g. if the parameter name is GE_eventTime and the parameter value is 2007-02-

19T20:29:00.000-0:00 then only those records are returned where their eventTime is equal to
19th February, 2007, 20:29 GMT or after this time.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 31/54 15 August 2007

The following query constraint parameters can be used to sort the links into chronological
order and also to limit the number of records to be returned:

Constraint Name Constraint

Value
Type

Required Meaning

orderBy String No If specified, names a single field that will be used to
order the results. The orderDirection field

specifies whether the ordering is in ascending
sequence or descending sequence.
Records included in the result that lack the specified
field altogether may occur in any position within the
result record list. The value of this parameter
SHALL be one of: eventTime or recordTime.

If omitted, no order is specified. The implementation
MAY order the results in any order it chooses, and
that order MAY differ even when the same query is
executed twice on the same data.

orderDirection String No If specified and orderBy is also specified, specifies

whether the results are ordered in ascending or
descending sequence according to the key specified
by orderBy. The value of this parameter must one

of ASC (for ascending order) or DESC (for

descending order). If omitted, defaults to DESC.
recordCountLimit Int No If specified, the results will only include the first N

records that match the other criteria, where N is the
value of this parameter. The ordering specified by
the orderBy and orderDirection parameters

determine the meaning of “first” for this purpose.
If omitted, all events matching the specified criteria
will be included in the results.

4.1.1 Effect of specifying multiple constraints

Note that where multiple constraint parameters are specified in a query to a DS, there is a
logical AND between them – i.e. all specified constraints must be satisfied (except those that
are ignored because either a particular Discovery Service does not support those fields – or a
publisher chose not to supply those fields).

Note also that EQ_action, EQ_bizStep and EQ_disposition may each take a list of
alternative values and the constraint is then satisfied if the value of the corresponding field in
the DS record matches any one of the values in the list of alternative values for that field. i.e.
there is a logical OR within a given constraint parameter, if multiple alternative values are
specified.

Discovery Services may support a REST query interface – or they may accept a query
specified via an XML message formatted as in the example below:

<?xml version="1.0" encoding="UTF-8"?>

<ds_query>

 <MATCH_anyEPC>

 <epc>urn:epc:id:sgtin:0614141.107340.1</epc>

 </MATCH_anyEPC>

</ds_query>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 32/54 15 August 2007

5 Response from a Discovery Service
An example of an unsigned response from a Discovery Service is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<ds_queryResponse>

 <epcElement>

 <epc>urn:epc:id:sgtin:0614141.107340.1</epc>

 <nodelist>

 <node>

 <noderef>586822F278C1C92DD40F53298FD2602582D2FA72</noderef>

 <status>OK-Verified</status>

 <serviceType>EPCIS</serviceType>

 <serviceAddress>http://www.factorycorp.com/gateway/epcis.wsdl</serviceAddress>

 <publisherID>

 <GLN>0614141000007</GLN>

 </publisherID>

 </node>

 <node>

 <noderef>758EC127AD9A6A6FB459EBE0210AB7C380062A7B</noderef>

 <status>Access Denied</status>

 </node>

 </nodelist>

 </epcElement>

 <epcElement>

 <epc>urn:epc:id:sgtin:0614141.107340.2</epc>

 <nodelist>

 <node>

 <noderef>586822F278C1C92DD40F53298FD2602582D2FA87</noderef>

 <status>OK-Verified</status>

 <serviceType>EPCIS</serviceType>

 <serviceAddress>http://www.factorycorp.com/gateway/epcis.wsdl</serviceAddress>

 <publisherID>

 <GLN>0614141000007</GLN>

 </publisherID>

 </node>

 <node noderef="758EC127AD9A6A6FB459EBE0210AB7C380062A45">

 <status>Access Denied</status>

 </node>

 </nodelist>

 </epcElement>

</ds_queryResponse>

The response indicates that the Discovery Service knows of two nodes for the specified EPC
but only the first node reveals its identity and provides any address information. It indicates
that is an EPCIS interface – and the status indicates that the Discovery Service was able to
verify the authenticity of the record from the publisher via a digital signature. The publisher ID,
in this case a GLN (and perhaps other information) is included.
For the second node, access is denied. However, the noderef is an opaque handle which
indicates to the client that it has not received a complete set of links – and (if the Discovery
Service supports this), the client may submit further information (or more comprehensive / up-
to-date credentials) to the operator of the service for the second node, using the noderef as a
reference number, to refer to the node that the client wishes to contact for further information.
Upon receipt of such a request, the Discovery Service may forward the request to the operator
of the node, perhaps as an e-mail message to a human administrator.
Note that this is a potentially useful value-added feature, but which requires additional security
measures to prevent it from being abused (e.g. generating spam messages to annoy
administrators etc.).

Note also that the response from a Discovery Service may provide a set of links for a number
of EPCs, especially if a list of EPCs is provided as input to the query parameters
MATCH_anyEPC, MATCH_parentID or MATCH_childEPC. The element <epcElement> is
used as a container for the links provided for each EPC, to avoid any ambiguity about which
links correspond to which EPC.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 33/54 15 August 2007

Below is an example of a query response that includes aggregation records

<?xml version="1.0" encoding="UTF-8"?>

<ds_response>

 <epcElement>

 <epc>urn:epc:id:sgtin:0614141.107340.4</epc>

 <nodelist>

 <node>

 <noderef>586822F278C1C92DD40F53298FD2602582D2FA87</noderef>

 <status>OK-Verified</status>

 <serviceType>EPCIS</serviceType>

 <serviceAddress>http://www.factorycorp.com/gateway/epcis.wsdl</serviceAddress>

 <publisherID>

 <GLN>0614141000007</GLN>

 </publisherID>

 </node>

 <node>

 <noderef>3758EC127AD9A6A6FB459EBE0210B7C380062A45</noderef>

 <status>OK-Verified</status>

 <serviceType>EPCIS</serviceType>

 <serviceAddress>http://www.distcorp.com/partners/epcis.wsdl</serviceAddress>

 <publisherID>

 <GLN>0537289000003</GLN>

 </publisherID>

 <aggregationInfo>

 <action>ADD</action>

 <parentID>urn:epc:id:sgtin:0614141.107340.1</parentID>

 <childEPCs>

 <epc>urn:epc:id:sgtin:0614141.107340.4</epc>

 </childEPCs>

 </aggregationInfo>

 </node>

 </nodelist>

 </epcElement>

</ds_response>

In this example, the information from the second node is that the EPC has been aggregated
within a parent object, whose ID is specified.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 34/54 15 August 2007

6 Interface methods
This section summarizes the methods available for interacting with a Discovery Service.
These are divided into Publisher methods (which a company uses to publish records to a
Discovery Service) and Query methods (used by a client for retrieving data from a Discovery
Service).

6.1 Methods available to both publishers and clients (query
interface)

The methods below are for information purposes and are generally available to clients and
publishers. The corresponding XML schema (XSD) are defined in Section 10.11.

getStandardVersion() identifies which version of a (future) Discovery Services

standard is implemented

getVendorVersion() identifies a vendor-specific number of the version and

revision number for this implementation

getSupportedOptionalFields() provides a list of meta-data fields supported by the data

model of this implementation.

getSupportsAggregation() returns true if the publishing and querying of aggregation

records is supported within this implementation of
Discovery Services; returns false if aggregation records are
not supported.

getSupportedMessaging() provides a list of message transport services supported by

this implementation of Discovery Services – indicates
allowed options to help a client specify the dest URI
parameter for a standing query (see section 8.1)

getCurrentTime() returns the current internal timestamp of the specific

Discovery Service. The timestamp should be expressed
with a resolution of 1 second and be timezone qualified,
relative to UTC. i.e. YYYY-MM-DDThh:mm:ssTZD
(e.g. “1997-07-16T19:20:30+01:00”)

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 35/54 15 August 2007

6.2 Publisher methods
This section should be read in conjunction with section 4, which explains how the publisher
first registers a publisher profile, then publishes a number of records referring to that profile.
Sections 10.1-10.6 define corresponding XML schema (XSD).

registerProfile(record) publishes a new publisher profile to a Discovery Service.
 The profile is an XML message conforming to the schema

RegisterProfile.xsd

updateProfile(record) informs the Discovery Service of a change to an existing
publisher profile.

 The profile update is an XML message conforming to the
schema UpdateProfile.xsd

publish(record) publishes a new record to a Discovery Service.
 The record is an XML message conforming to the schema

PublishRecord.xsd

6.3 Query methods
This section should be read in conjunction with section 5, which explains how the query
mechanism uses parameters to select which link information is retrieved.

poll(querySpecification) retrieves link information from a Discovery Service subject

to the constraint criteria specified in the list
querySpecification.
The querySpecification takes the form of pairs of a
constraint parameter name and a value (which may itself be
a list of alternative values, any of which represent a match).
The constraint MATCH_anyEPC is mandatory and must
always be included.

Section 10.8 defines XML schema (XSD) for sending a query to a Discovery Service.

The response from our Discovery Service shall conform to the schema QueryResponse.xsd
defined in section 10.9

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 36/54 15 August 2007

7 Support for standing queries
It is important for event-driven service-oriented-architectures to support standing queries, in
order to allow a client to register their interests in particular query criteria and be automatically
and promptly notified with any future updates matching those criteria, which are subsequently
received by the service at any time in the future. For example, a manufacturer may wish to
register a standing query with a Discovery Service, specifying as query criteria a list of the
EPCs shipped by the manufacturer, in order to be automatically notified of their progress
across the supply chain, as downstream organizations publish records to the Discovery
Service, usually to acknowledge that they have handled those objects.

Both the Application Level Events (ALE) and EPC Information Services (EPCIS) standard
interfaces support registration of standing queries, with some subtle differences between them.
Application Level Events 1.0 allows the boundary conditions (i.e. start/stop conditions or
triggers) of an Event Cycle specification to be set, to determine the collection period for the
reporting of ALE events – these may be triggered by external events or specified as being
periodic in time. EPC Information Services 1.0 takes a slightly different approach and allows
for a time-based subscription control, following a similar approach and syntax to the
scheduling of processes on POSIX operating systems via cron and crontab.

The latter approach, of time-based subscription controls would appear to be most appropriate
for Discovery Services. This provides the client with flexibility to suggest a schedule for when
new records should be delivered from the Discovery Service to the client, either batched to be
received at particular times of the day – or if the client specifies the trigger URI‘urn:bridge-

project.eu:ds:triggers:onPublication’, this should be interpreted as a request for new
records to be sent to the client preferably without any delay (i.e. no time-based batching of
responses).

7.1 Methods for supporting standing queries
The subscription models specified in ALE and EPCIS both support the methods subscribe(),

unsubscribe(), and poll(). The explanation below indicates how these methods may be
applied to Discovery Services to support standing queries.

poll(querySpec: querySpecification) : queryResults

The poll method is used to perform an immediate one-off query of a Discovery Service.
The query specification is formatted according to Query.xsd defined in Section 10.8 and
the results are usually returned synchronously using the same message transport and
formatted according to QueryResponse.xsd defined in Section 10.9.

subscribe(querySpecification, dest: URI, controls: SubscriptionControls,

subscriptionID: string): boolean success

The subscribe method is used to create a subscription to a standing query. Like the poll
method, the query is specified according to the format Query.xsd defined in Section
10.8.
The second parameter, dest is a URI that indicates a messaging protocol and address
to which the results should be sent. For example, a URI that begins jms: indicates that
Java Message Service (JMS) is to be used.
The third parameter, controls is used to specify the time schedule for when results
should be batched together and sent to the messaging service. The format,
SubscriptionControls is defined below – and aligned with the crontab-like
specification used in EPCIS v1.0
The fourth parameter, subscriptionID is a string that is used to unambiguously refer to

an individual subscription created by a particular client. i.e. the subscriptionID

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 37/54 15 August 2007

combined with the client ID should be unique for each subscription running within a
particular Discovery Service implementation.
A return value of true indicates that a subscription has successfully been created. A
return value of false indicates that creation of a subscription was unsuccessful, most
likely because an existing subscriptionID was supplied.

unsubscribe(subscriptionID: String) : boolean success

This method allows a client to cancel a subscription that is no longer of interest to the
client.
A return value of true indicates that a subscription has successfully been cancelled. A
return value of false indicates that cancellation of a subscription was unsuccessful, most
likely because an invalid subscriptionID was supplied.

getSubscriptionIDs() : list of String

This method returns to the client a list of all the subscriptionID values for the standing
queries subscribed to by the client

getSubscriptionByID(subscriptionID: String)

This method returns to the client a message that contains the parameters originally
supplied for a particular subscriptionID via the subscribe() command. The format of
this message is defined in section 10.10 This method is only provided for convenience,
in case the client failed to store these details in a local cache when using the
subscribe() method.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 38/54 15 August 2007

7.2 Subscription controls

Subscription controls can be specified to return responses to standing queries either on a
periodic basis or based upon particular trigger conditions.

The fields for a Subscription Control instance are defined below – and XML schema are
provided in section 10.10

Argument Type Description
schedule QuerySchedule (Optional) Defines a periodc

schedule on which the query is to
be executed. Exactly one
argument of either schedule or
trigger must be specified – or else
a
SubscriptionControlsException

should be raised.
trigger URI (Optional) Specifies a triggering

event known to a Discovery
Service, which serves to trigger
execution of the standing query.
Exactly one argument of either
schedule or trigger must be
specified – or else a
SubscriptionControlsException

should be raised.
initialRecordTime Time (Optional) Specifies a time used to

constrain which records are
considered when processing the
standing query when it is executed
for the first time. If omitted, the
time defaults to the time at which
the subscription was created.

reportIfEmpty boolean If true, a response is always sent to
the subscriber when the query is
executed. If false, a response is
only sent to the subscriber if it
contains a non-empty set of
addresses.

7.3 Special value of trigger URI
The trigger URI‘urn:bridge-project.eu:ds:triggers:onPublication’, this should be
interpreted as a request for new records to be sent to the client preferably without any delay
(i.e. no time-based batching of responses).

7.4 Schedule
The schedule is specified five optional values, which specify the minute, hour, day of week,
month and day of month when a standing query should be executed, although
implementations of Discovery Services are free to execute the query within a narrow time
range similar to the value specified, if this enables better load balancing.

The five numeric values in the list are specified as follows:

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 39/54 15 August 2007

Argument Type Description
minute String (Optional) Specifies that the query time must have a matching minute

value. The range for this parameter is 0 through 59, inclusive.
hour String (Optional) Specifies that the query time must have a matching hour

value. The range for this parameter is 0 through 23, inclusive, with 0

denoting the hour that begins at midnight, and 23 denoting the hour

that ends at midnight.
dayOfMonth String (Optional) Specifies that the query time must have a matching day of

month value. The range for this parameter is 1 through 31, inclusive.

(Values of 29, 30, and 31 will only match during months that have at

least that many days.)

month String (Optional) Specifies that the query time must have a matching month

value. The range for this parameter is 1 through 12, inclusive.
dayOfWeek String (Optional) Specifies that the query time must have a matching day of

week value. The range for this parameter is 1 through 7, inclusive,

with 1 denoting Monday, 2 denoting Tuesday, and so forth, up to 7

denoting Sunday.

Note that all values are optional. If no values are specified, the schedule shall instead be
interpreted as corresponding to the special trigger URI, ‘urn:bridge-

project.eu:ds:triggers:onPublication’ and responses will be sent as soon as possible
after new records are received by a Discovery Service, where they match the query specified.

XML schema for the subscription controls are provided in section 10.10

7.5 Push vs Pull
Standing queries are intended to provide a client subscribers with updated information
corresponding to records received by a Discovery Service at a future time, without requiring
further interaction with the Discovery Service itself. Depending on the choice of messaging
service specified via the dest URI parameter, the updates may be pushed via some
messaging protocols to a ‘listener’ that expects to receive them. For other messaging
services, the updates are pushed into a dedicated queue for a particular client and the client
may need to periodically poll the message queue to retrieve any updates, much like a POP e-
mail client periodically polls a remote POP mailbox – although this is clearly a different
interaction mode than polling of a Discovery Service, since the polling is of the underlying
message transport layer.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 40/54 15 August 2007

8 Access Controls
Access control policies may be specified in order to grant or restrict visibility of that record to
particular clients, groups of clients or roles.

Access control policies may be specified by both the operator of a Discovery Service and by
the publisher of a Discovery Service record. The Discovery Service policy may specify default
security arrangements that will apply to all publishers and cannot be over-ridden by the
publisher. For example, such Discovery Service policies may specify that a regulatory body
has read access for all records relating to particular products.

Access controls relate to the reading of DS records, along with the writing, updating and
deletion of such records. Access controls may also cover the definition of security policies to
allow delegation of access right management.

The access control decision may be made over any information submitted in the client request.
This includes the body of the request (specifying for example the EPC range or attribute filters
such as bizStep), along with header information carrying the client credentials. Such
credentials will include the authenticated identity of the client along with assertions such as
roles or groups to which the client belongs.

Consider as an example, the simple supply chain below:

publisher B may decide to grant read access to A for records with bizStep = ‘receiving’
and may grant read access to C for records with bizStep = ‘shipping’.

In this example, publisher B published two separate records to the Discovery Service, in order
to keep their upstream supply chain separate from their downstream supply chain.

However, client A may be able to read records published by C (or vice versa), depending on
the access controls that they set for the records that they publish.

One of the challenges in developing access control policies is scalability. Supposing that there
are N organizations within a particular supply chain, there could theoretically be
N x (N-1) distinct policies, although the number of Discovery Service records scales
approximately linearly with N.

In reality, many organizations may have very little visibility across the entire supply chain – and
may only have visibility of one company upstream and one company downstream. In this
situation, a more scaleable approach to the number of access control policies can be achieved
if the policies can also express whether the rights granted to the supplier or customer are also
sharable with other parties further upstream / downstream, as appropriate. In this way,

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 41/54 15 August 2007

propagating access control policies between companies that are adjacent to each other within
the supply chain can potentially be combined together logically to evaluate the appropriate
policy between any two organizations within the supply chain. The EPCglobal Architecture
Review Committee has recently outlined such an approach.

Access control policies for Discovery Services will be developed more fully by BRIDGE WP4,
task 4.5.2 – and their implementation described in task 4.5.3.

In order to ensure scalability of access control policies, a single policy may be applied to
multiple records. In addition to the roles of client and publisher, a separate security manager
role will be defined, together with a policy management interface, allowing the security
manager to specify the policies to be applied both to the records published by that organization
and to queries made by clients within that organization, in order to specify a confidentiality
policy, to prevent their query from being divulged to unintended parties.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 42/54 15 August 2007

9 XML Schema
This section provides XML schema that define the structure of the messages and responses
for interaction with a Discovery Service.

9.1 Registering a publisher profile

RegisterProfile.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:include schemaLocation="./ServiceTypeIDList.xsd"/>

 <xsd:complexType name="RegisterProfile">

 <xsd:sequence>

 <xsd:element name="serviceType" type="ds:ServiceTypeIDList" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="serviceAddress" type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_registerProfile" type="ds:RegisterProfile"/>

</xsd:schema>

9.2 Response to registering a profile

RegisteredProfileResponse.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:include schemaLocation="./ServiceTypeIDList.xsd"/>

 <xsd:complexType name="RegisteredProfileResponse">

 <xsd:sequence>

 <xsd:element name="serviceType" type="ds:ServiceTypeIDList" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="serviceAddress" type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="publisherProfileID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_registeredProfileResponse" type="ds:RegisteredProfileResponse"/>

</xsd:schema>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 43/54 15 August 2007

9.3 Updating a publisher profile

UpdateProfile.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:include schemaLocation="./ServiceTypeIDList.xsd"/>

 <xsd:complexType name="Profile">

 <xsd:sequence>

 <xsd:element name="serviceType" type="ds:ServiceTypeIDList" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="serviceAddress" type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="UpdateProfile">

 <xsd:sequence>

 <xsd:element name="old" type="ds:Profile" minOccurs="1" maxOccurs="1">

 <xsd:element name="new" type="ds:Profile" minOccurs="1" maxOccurs="1">

 <xsd:element name="publisherProfileID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_updateProfile" type="ds:UpdateProfile"/>

</xsd:schema>

9.4 Response to updating a publisher profile

UpdatedProfileResponse.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:include schemaLocation="./ServiceTypeIDList.xsd"/>

 <xsd:complexType name="UpdatedProfileResponse">

 <xsd:sequence>

 <xsd:element name="serviceType" type="ds:ServiceTypeIDList" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="serviceAddress" type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="publisherProfileID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_updatedProfileResponse" type="ds:UpdatedProfileResponse"/>

</xsd:schema>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 44/54 15 August 2007

9.5 Publishing basic records or aggregation records

PublishRecord.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:include schemaLocation="./DSActionList.xsd"/>

 <xsd:complexType name="EPCList">

 <xsd:sequence>

 <xsd:element name="epc" type="xsd:anyURI" minOccurs="1" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="Record">

 <xsd:sequence>

 <xsd:element name="publisherProfileID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="epcList" type="ds:EPCList" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="action" type="ds:DSActionList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="bizStep" type="xsd:anyURI" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="disposition" type="xsd:anyURI" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="eventTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="AggregationRecord">

 <xsd:sequence>

 <xsd:element name="publisherProfileID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="parentID" type="xsd:anyURI" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="childEPCs" type="ds:EPCList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="action" type="ds:DSActionList" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="bizStep" type="xsd:anyURI" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="disposition" type="xsd:anyURI" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="eventTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="Header">

 <xsd:sequence>

 <xsd:element name="TTL" type="xsd:duration" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="ACP" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="PublishRecord">

 <xsd:sequence>

 <xsd:element name="ds_header" type="ds:Header" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="ds_record" type="ds:Record" minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="ds_aggregationRecord" type="ds:AggregationRecord" minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_publishRecord" type="ds:PublishRecord"/>

</xsd:schema>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 45/54 15 August 2007

9.6 Response to publishing of records

PublishedRecordResponse.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:complexType name="PublishRecord">

 <xsd:sequence>

 <xsd:element name="recordID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_publishedRecordResponse" type="ds:PublishRecord"/>

</xsd:schema>

9.7 Voiding of published records

VoidRecord.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:complexType name="VoidRecord">

 <xsd:sequence>

 <xsd:element name="recordID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="reason" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_voidRecord" type="ds:VoidRecord"/>

</xsd:schema>

VoidedRecordResponse.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:complexType name="VoidedRecordResponse">

 <xsd:sequence>

 <xsd:element name="recordID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="voidRecordException" type="xsd:string" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_voidedRecordResponse" type="ds:VoidedRecordResponse"/>

</xsd:schema>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 46/54 15 August 2007

9.8 Specifying a query

Query.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:include schemaLocation="./DSAnyActionList.xsd"/>

 <xsd:include schemaLocation="./RecordTypeList.xsd"/>

 <xsd:include schemaLocation="./DSOrderByList.xsd"/>

 <xsd:include schemaLocation="./DSOrderDirList.xsd"/>

 <xsd:complexType name="EPCList">

 <xsd:sequence>

 <xsd:element name="epc" type="xsd:anyURI" minOccurs="1" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="Query">

 <xsd:sequence>

 <xsd:element name="MATCH_anyEPC" type="ds:EPCList" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="MATCH_parentID" type="ds:EPCList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="MATCH_childEPCs" type="ds:EPCList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="recordType" type="ds:RecordTypeList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="GE_eventTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="LT_eventTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="GE_recordTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="LT_recordTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="EQ_action" type="ds:AnyActionList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="EQ_bizStep" type="xsd:anyURI" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="EQ_disposition" type="xsd:anyURI" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="orderBy" type="ds:OrderByList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="orderDirection" type="ds:OrderDirList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="recordCountLimit" type="xsd:integer" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_query" type="ds:Query"/>

</xsd:schema>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 47/54 15 August 2007

9.9 Response to a query

QueryResponse.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:include schemaLocation="./DSActionList.xsd"/>

 <xsd:include schemaLocation="./StatusIDList.xsd"/>

 <xsd:include schemaLocation="./ServiceTypeIDList.xsd"/>

 <xsd:complexType name="EPCList">

 <xsd:sequence>

 <xsd:element name="epc" type="xsd:anyURI" minOccurs="1" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="AggregationInfoType">

 <xsd:sequence>

 <xsd:element name="parentID" type="xsd:anyURI" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="childEPCs" type="ds:EPCList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="action" type="ds:DSActionList" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="PublisherType">

 <xsd:sequence>

 <xsd:element name="GLN" type="xsd:string" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="NodeType">

 <xsd:sequence>

 <xsd:element name="noderef" type="xsd:string" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="status" type="ds:StatusIDList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="serviceType" type="ds:ServiceTypeIDList" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="serviceAddress" type="xsd:anyURI" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="aggregationInfo" type="ds:AggregationInfoType" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="publisher" type="ds:PublisherType" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="NodeListType">

 <xsd:sequence>

 <xsd:element name="node" type="ds:NodeType" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="epcElement">

 <xsd:sequence>

 <xsd:element name="epc" type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="nodelist" type="ds:NodeListType" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="QueryResponse">

 <xsd:sequence>

 <xsd:element name="responseCode" type="ds:ResponseCodeID" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="epcElement" type="ds:epcElement" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ds_response" type="ds:QueryResponse"/>

</xsd:schema>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 48/54 15 August 2007

9.10 Schema for standing queries

StandingQueryMethods.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:include schemaLocation="./DSAnyActionList.xsd"/>

 <xsd:include schemaLocation="./RecordTypeList.xsd"/>

 <xsd:include schemaLocation="./DSOrderByList.xsd"/>

 <xsd:include schemaLocation="./DSOrderDirList.xsd"/>

 <xsd:include schemaLocation="./Query.xsd"/>

 <xsd:include schemaLocation="./QueryResponse.xsd"/>

 <xsd:complexType name="SubscriptionControls">

 <xsd:sequence>

 <xsd:element name="schedule" type="ds:QuerySchedule" minOccurs="0"/>

 <xsd:element name="trigger" type="xsd:anyURI" minOccurs="0"/>

 <xsd:element name="initialRecordTime" type="xsd:dateTime" minOccurs="0"/>

 <xsd:element name="reportIfEmpty" type="xsd:boolean"/>

 <xsd:element name="extension" type="ds:SubscriptionControlsExtensionType" minOccurs="0"/>

 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="SubscriptionControlsExtensionType">

 <xsd:sequence>

 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:anyAttribute processContents="lax"/>

 </xsd:complexType>

 <xsd:complexType name="QuerySchedule">

 <xsd:sequence>

 <xsd:element name="second" type="xsd:string" minOccurs="0"/>

 <xsd:element name="minute" type="xsd:string" minOccurs="0"/>

 <xsd:element name="hour" type="xsd:string" minOccurs="0"/>

 <xsd:element name="dayOfMonth" type="xsd:string" minOccurs="0"/>

 <xsd:element name="month" type="xsd:string" minOccurs="0"/>

 <xsd:element name="dayOfWeek" type="xsd:string" minOccurs="0"/>

 <xsd:element name="extension" type="ds:QueryScheduleExtensionType" minOccurs="0"/>

 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="QueryScheduleExtensionType">

 <xsd:sequence>

 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:anyAttribute processContents="lax"/>

 </xsd:complexType>

 <xsd:complexType name="Subscribe">

 <xsd:sequence>

 <xsd:element name="querySpecification" type="ds:Query"/>

 <xsd:element name="dest" type="xsd:anyURI"/>

 <xsd:element name="controls" type="ds:SubscriptionControls"/>

 <xsd:element name="subscriptionID" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="subscribe" type="ds:Subscribe"/>

 <xsd:element name="SubscribeResponse" type="xsd:boolean"/>

 <xsd:complexType name="Unsubscribe">

 <xsd:sequence>

 <xsd:element name="subscriptionID" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="unsubscribe" type="ds:Unsubscribe"/>

 <xsd:element name="UnsubscribeResponse" type="xsd:boolean"/>

 <xsd:element name="getSubscriptionIDs" type="ds:emptyParams"/>

 <xsd:element name="GetSubscriptionIDsResponse" type="ds:ArrayOfString"/>

 <xsd:complexType name="GetSubscriptionByID">

 <xsd:sequence>

 <xsd:element name="subscriptionID" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 49/54 15 August 2007

 <xsd:element name="getSubscriptionByID" type="ds:GetSubscriptionByID" />

 <xsd:complexType name="GetSubscriptionByIDResponse">

 <xsd:sequence>

 <xsd:element name="querySpecification" type="ds:Query"/>

 <xsd:element name="dest" type="xsd:anyURI"/>

 <xsd:element name="controls" type="ds:SubscriptionControls"/>

 <xsd:element name="subscriptionID" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="GetSubscriptionByIDResponse" type="ds:GetSubscriptionByIDResponse" />

 <xsd:complexType name="Poll">

 <xsd:sequence>

 <xsd:element name="querySpecification" type="ds:Query"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="poll" type="ds:Poll"/>

 <xsd:element name="pollQueryResponse" type="ds:QueryResponse"/>

</xsd:schema>

9.11 Schema for general interface methods

GeneralMethods.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ds="urn:bridge-project.eu:ds:xsd:1" elementFormDefault="unqualified" attributeFormDefault="unqualified"

version="0.1">

 <xsd:complexType name="ds:EmptyParams"/>

 <xsd:complexType name="ArrayOfString">

 <xsd:sequence>

 <xsd:element name="string" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="ds_getStandardVersion" type="ds:EmptyParams"/>

 <xsd:element name="ds_standardVersionResponse" type="xsd:string"/>

 <xsd:element name="ds_getVendorVersion" type="ds:EmptyParams"/>

 <xsd:element name="ds_vendorVersionResponse" type="xsd:string"/>

 <xsd:element name="ds_getSupportedOptionalFields” type="ds:EmptyParams"/>

 <xsd:element name="ds_supportedOptionalFieldsResponse" type="ds:ArrayOfString"/>

 <xsd:element name="ds_getSupportsAggregation” type="ds:EmptyParams"/>

 <xsd:element name="ds_supportedOptionalFieldsResponse" type="xsd:boolean"/>

 <xsd:element name="ds_getSupportedMessaging” type="ds:EmptyParams"/>

 <xsd:element name="ds_supportedMessagingResponse" type="ds:ArrayOfString"/>

 <xsd:element name="ds_getCurrentTime” type="ds:EmptyParams"/>

 <xsd:element name="ds_getCurrentTimeResponse" type="xsd:dateTime"/>

</xsd:schema>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 50/54 15 August 2007

9.12 Auxiliary schema for constrained enumerated lists

DSActionList.xsd

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated from annotated java -->

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:simpleType name="DSActionList">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="CREATE"/>

 <xsd:enumeration value="LINK"/>

 <xsd:enumeration value="CLOSE"/>

 <xsd:enumeration value="DESTROY"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

DSAggActionList.xsd

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated from annotated java -->

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:simpleType name="DSAggActionList">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="ADD"/>

 <xsd:enumeration value="OBSERVE"/>

 <xsd:enumeration value="DELETE"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

DSAnyActionList.xsd

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated from annotated java -->

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:simpleType name="DSAnyActionList">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="CREATE"/>

 <xsd:enumeration value="LINK"/>

 <xsd:enumeration value="CLOSE"/>

 <xsd:enumeration value="DESTROY"/>

 <xsd:enumeration value="ADD"/>

 <xsd:enumeration value="OBSERVE"/>

 <xsd:enumeration value="DELETE"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 51/54 15 August 2007

DSOrderByList.xsd

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated from annotated java -->

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:simpleType name="DSOrderByList">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="eventTime"/>

 <xsd:enumeration value="recordTime"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

DSOrderDirList.xsd

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated from annotated java -->

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:simpleType name="DSOrderDirList">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="ASC"/>

 <xsd:enumeration value="DESC"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

RecordTypeList.xsd

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated from annotated java -->

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:simpleType name="RecordTypeList">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="DS_Record"/>

 <xsd:enumeration value="DS_AggregationRecord"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

ResponseCodeList.xsd

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated from annotated java -->

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:simpleType name="ResponseCodeList">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="OK"/>

 <xsd:enumeration value="Bad Request"/>

 <xsd:enumeration value="Unauthorized"/>

 <xsd:enumeration value="Forbidden"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

ServiceTypeIDList.xsd

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 52/54 15 August 2007

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated from annotated java -->

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:simpleType name="ServiceTypeIDList">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="EPCIS"/>

 <xsd:enumeration value="DS"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

StatusIDList.xsd

<?xml version="1.0" encoding="UTF-8"?>

<!-- Generated from annotated java -->

<xsd:schema targetNamespace="urn:bridge-project.eu:ds:xsd:1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ds="urn:bridge-project.eu:ds:xsd:1"

elementFormDefault="unqualified" attributeFormDefault="unqualified" version="0.1">

 <xsd:simpleType name="StatusIDList">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="OK-Verified"/>

 <xsd:enumeration value="OK-Unverified"/>

 <xsd:enumeration value="Access Denied"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 53/54 15 August 2007

10 Glossary of Terms

Client An organization making a query to an

EPCIS or Discovery Service
Custodian An organization that physically handles

an individual object at some time during
its supply chain or lifecycle.

Discovery Service A mechanism (not yet standardized) for
finding providers of information about an
object, if the object’s EPC or unique
identifier is known

EPC – abbreviation of ‘Electronic
Product Code’

A framework for globally unique
identifiers for use with Auto-ID
technologies. Use of a globally unique
identifier allows each object to be tracked
individually and for each organization to
store information about each individual
object

EPCIS – EPC Information Services A standard interface for accessing
detailed serial-level information about an
object (usually retrieved from within a
single organization)

Historical Trace A historical (or upstream) trace attempts
to find all previous information providers.

Information Provider / Source / Node An organization that holds some detailed
information about an individual object.
This potentially includes custodians (who
handle the physical object), as well as
non-custodians, such as insurance
companies, who nevertheless hold
individual records for objects, such as
warranty details.

Publisher An organization that publishes a new
record to a Discovery Service

(Discovery Services) Record A data packet, that contains a number of
data fields, and is used to indicate a
relationship between

Track The act of finding the current (or last
recorded) information provider for an
object

Trace The act of finding several information
providers for an object.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS High-level Design 54/54 15 August 2007

11 References

EPCglobal Network Architecture Framework document
See http://www.epcglobalinc.org/standards

EPC Information Services (EPCIS) v1.0
See http://www.epcglobalinc.org/standards

EPCglobal Tag Data Standards v1.3
See http://www.epcglobalinc.org/standards

Application Level Events (ALE) v1.0
See http://www.epcglobalinc.org/standards

Object Name Service (ONS) v1.0
See http://www.epcglobalinc.org/standards

HTTP 1.1 (including status codes)
http://www.ietf.org/rfc/rfc2616.txt

REST – REpresentation State Transfer
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

XSD XML Schema
http://www.w3.org/XML/Schema

Time and data formats
http://www.w3.org/TR/NOTE-datetime

Building Radio frequency IDentification for the Global
Environment

High level design for Discovery Services

Section B: Analysis of Discovery Service
Models for RFID

Authors: University of Cambridge, AT4 wireless, BT Research,
 SAP Research

15 August 2007

This work has been partly funded by the European Commission contract No: IST-2005-
033546

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 2/38 15 August 2007

Revision History
Version Date Author Summary of Changes

 January 25,
2007

Trevor Burbridge (BT) Initial document: Security Considerations of
Alternative Discovery Service Designs

 May 29,
2007

Trevor Burbridge (BT) Included section on taxonomy of DS models
and preliminary evaluation

 June 7,
2007

Trevor Burbridge (BT) Revised version

 June, 2007 Mark Harrison
(Cambridge)

Additions to all sections

 June 29,
2007

Oliver Kasten (SAP) Additions and improvements to all sections.
Integration into BRIDGE deliverable
template.

 July 2, 2007 Cosmin Condea (SAP) Modifications to Section 2, format changes

 July 4, 2007 Oliver Kasten (SAP) Added Sect. 1, Introduction.

 July 4, 2007 Mark Harrison
(Cambridge)

Added intro to one-off vs. standing queries

 July 5, 2007 Trevor Burbridge (BT) Improvements to sections on discovery from
unknown parties and on resource
confidentiality

 July 6, 2007 Oliver Kasten (SAP) Improvements to all sections, final editing.

 July 6, 2007 Mark Harrison
(Cambridge)

Proof-reading of document

 July 26,
2007

Nicholas Pauvre (GS1
France)

Bridge Internal Review

 August 2,
2007

AT4 wireless Inclusion of comments from internal review

Note

The views expressed in this document are the views of the joint authors

 and the Community is not liable for any use that may be made of the

 information contained herein.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 3/38 15 August 2007

TABLE OF CONTENTS

1. INTRODUCTION ... 4

1.1. ASSUMPTIONS ... 4
1.1.1. Connectivity, Availability.. 4
1.1.2. Trust and Confidentiality ... 4

1.2. REQUIREMENTS... 4

2. RFID AND DISCOVERY SERVICES ... 5

2.1. BACKGROUND AND SCOPE.. 5
2.2. QUERIES AND DATA .. 5
2.3. MODES OF INTERACTION ... 6

2.3.1. One-off queries ... 6
2.3.2. Standing queries .. 6

3. DISCOVERY-SERVICE TAXONOMY.. 8

3.1. TAXONOMY .. 8
3.2. INITIAL SELECTION CRITERIA .. 9

3.2.1. Interaction Mode and Transience of Connectivity ... 10
3.2.2. Data Ownership and Trust .. 10

3.3. DIRECTORY OF RESOURCES... 11
3.4. DIRECTORY OF CLIENTS ... 13
3.5. NOTIFICATION OF RESOURCES ... 15
3.6. NOTIFICATION OF CLIENTS.. 17
3.7. META RESOURCE .. 19
3.8. META CLIENT... 20
3.9. NOTIFICATION OF EVENTS... 21
3.10. QUERY PROPAGATION .. 22
3.11. SUMMARY AND CONCLUSION .. 23

3.11.1. Interaction Mode and Transience of Connectivity ... 23
3.11.2. Data Ownership and Trust .. 23

4. SELECTED DISCOVERY SERVICE DESIGNS... 24

4.1. RFID DIRECTORY SERVICE .. 25
4.2. RFID QUERY RELAY ... 28

5. ANALYSIS OF DESIGN CANDIDATES.. 32

5.1. SECURITY AND TRUST... 32
5.2. NETWORK PERFORMANCE AND RESILIENCE OF DESIGN CANDIDATES ... 35

6. CONCLUSIONS .. 37

7. BIBLIOGRAPHY ... 37

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 4/38 15 August 2007

1. Introduction

In this section we will briefly repeat our basic assumptions and requirements for
completeness of this document and for the reader’s convenience. For an introduction to the
components of the EPC Network that are relevant in this context and to basic Discovery
Service concepts, please refer to D2.4, Section A, High-level design.

1.1. Assumptions
We assume for the purposes of this discussion that both the client and resource trust the
Discovery Service with which they are interacting. They expect that the Discovery Service
will release information in accordance with its public design and not act in any other interest.
Our discussion is based on the following assumptions:

1.1.1. Connectivity, Availability

• EPCIS instances are generally connected to the Internet and are generally reliable.

• EPCIS instances may have downtimes (typically in the order of hours, e.g., for
maintenance)

• The volume of client queries (to an EPCIS) is expected to be an order of magnitude
lower compared to the volume of event updates (to an EPCIS). Event updates include
the creation of new EPCs as well as read events of the same EPC in several
locations and organizations

• The address of an EPCIS may change infrequently (e.g., domain name change after
company being bought, restructuring of a company’s IT infrastructure)

1.1.2. Trust and Confidentiality

• The provider of a Discovery Service is expected to be trustworthy and to act in the
interest of resources (i.e., EPCIS instances).

1.2. Requirements
Below is a list of the most important requirements. For the full list of requirements please
refer to D2.1, Section C.

• Client Queries must be treated confidentially by the Discovery Service

• Discovery Service records (typically, EPC number and resource references) must be
treated confidentially by the discovery service.

• Latency times should be minimized

• The Query Response must be complete, that is, it must contain all answers by
resources that have willingly chosen to provide an answer.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 5/38 15 August 2007

2. RFID and Discovery Services
A Discovery Service provides a method for the establishment of contact between a client and
a resource. Discovery Services appear in some form in any Service Oriented Architecture but
vary in the exact requirements they are designed to meet. While there are a number of
different approaches to establish communication between a client and a resource, we shall
outline some of the main ones and discuss their suitability for RFID.

2.1. Background and Scope
The RFID architecture we consider and which we try to find a suitable Discovery Service for
is the EPCglobal Network [12]. Its central purpose is to enable inter-organizational sharing of
information about individually identifiable objects. In the EPCglobal Network, the Electronic
Product Code (EPC) serves the role of a globally unique ID for objects, The client is an
application or service that requires data associated with an EPC-identifiable object whereas
the resources are the repositories that contain item-level data (which is typically but not
necessarily collected using RFID technology). In the EPCglobal Network, these repositories
are the so-called EPC Information Services (EPCIS). Discovery Services that we discuss
throughout this document focus on detection of item-level information services that actually
share item-level data between multiple organizations. Note that in the EPCglobal Network
other kinds of discovery, possibly at different layers in the architecture, could be present – for
example, the discovery of RFID readers. Since in our case there is no single owner of the
resources and client applications, discovery becomes particularly challenging. In such a
situation, the Discovery Service can act as a trusted intermediary to establish selected
contact between clients and resources.

The Discovery process forms part of a larger communication, whose ultimate aim is to allow
resources to serve the needs of clients. The communication between the client, Discovery
Service and resource can be considered in three phases:

1) Setup. During this phase the client and the resource engage with a Discovery
Service to register their interests or capabilities and negotiate security rights.

2) Discovery. The discovery phase provides either the client or resource with sufficient
information about the other party to initiate the service phase. For the purposes of this
document the discovery phase is considered to start when the client attempts to
discover resources that have already been publicised or vice-versa.

3) Service Fulfilment. During the service fulfilment phase the resources are engaged to
meet the ultimate demands of the clients. The Service Fulfilment phase is considered
to start when the resource becomes aware of the client request and is able to meet it.

2.2. Queries and Data
Before proceeding with the taxonomy of Discovery Services, let us add more specifics in
regards to an RFID architecture. We start from a couple of simplifying assumptions on which,
as we will see later, our Discovery Services models will be based on. The first one is that
clients can specify either a full query including the EPC number and other parameters or
specify only the EPC number. The EPC number represents the query key. The second
assumption is that resources can either publish to the Discovery Service solely their EPC
numbers they hold or send the full events, that is, business steps, state, etc., pertaining to
their EPC-identifiable objects. This implies that the data stored on the Discovery Service /
intermediary level can take one of the following four variants:

1) Tuples of the form (EPC number, resource reference). For example, the resource
reference may indicate the URL used to the access an EPCIS repository

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 6/38 15 August 2007

2) Actual data, fully replicated from all resources / EPCIS instances. This includes the
EPC number and resource reference.

3) Keys in the client queries, i.e., the EPC numbers of interest to the client
4) Full client queries.

2.3. Modes of interaction
This section discusses two modes of interaction between a client and information resources,
namely one-off queries and standing queries.

2.3.1. One-off queries

In a one-off query, a client wishes to perform a specific query only once and gather current
and historical information that is already available at the time the query is issued. The
information may be fragmented across multiple resources and the intermediary assists with
the gathering of that information, either by forwarding the client's query to multiple relevant
resources - or by providing the client with a list of relevant resources, allowing the client to
contact each resource in turn.

One-off queries are suitable when the client is not interested in future activity of the specified
EPC and does not wish to be informed about new information provided by existing
resources, nor about the future arrival of new resources that may provide additional
information about the specified EPC.

2.3.2. Standing queries

Standing queries allow a client to register a persistent ongoing interest in a particular EPC,
possibly further qualified by additional query parameters. In this situation, a client may wish
to be informed about either new information provided by existing resources, as well as about
the future arrival of new resources that may provide information about the specified EPC.

For a standing query, the intermediary and/or resource are required to maintain state
information about the standing query subscriptions registered by each client. This typically
consists of the following information per subscription:

• client ID and callback address (i.e. how and where to send future information),

• query details (in order to send only relevant information),

• timestamp of the last time when an update is sent to the client from the intermediary or
resource (note that this timestamp is updated with each successive update that is sent -
and should use the same internal clock that is used for recording the recordTime within
an EPCIS event or within a Discovery Service record).

Many readers of this document may be familiar with existing resource update mechanisms,
such as Really Simple Syndication (RSS) feeds on websites and weblogs, through which a
client can quickly be alerted to new content that has recently been added. The EPCglobal
standards, EPC Information Services (EPCIS) v1.0 and Application Level Events (ALE) v1.0
already support standing queries / filter requests via a publish-and-subscribe mechanism.
However, this document is concerned with mechanisms that allow a client to discover
providers of information about an EPC, for which the client may have no prior knowledge of
their existence, nor an existing business relationship, in some cases.

This document is therefore less concerned about standing queries subscribed to particular
known resources (which is already handled by EPCIS 1.0) - and more concerned with
standing queries subscribed to the intermediary, which allow new resources to make
themselves known to subscribing clients at a future time when a new resource publishes a
record to the intermediary to indicate that they also have information about a particular EPC.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 7/38 15 August 2007

In the discussion of the eight models, we consider their suitability for these two modes of
interaction - and in the discussion of two possible implementations, these modes of
interaction are considered to be implemented via a hybrid of two distinct models, one model
for each mode of interaction.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 8/38 15 August 2007

3. Discovery-Service Taxonomy
In this section we will present a taxonomy for discovery services, resulting in eight basic
models. Before discussing these models in more detail, we will present the initial selection
criteria assessing the suitability of those models for RFID systems. Based on these criteria
we will dismiss some of the models as unsuitable for our needs. The remaining models, and
potential implementation options, will be discussed in the next section.

3.1. Taxonomy
We first consider four communication models that have an explicit Discovery phase. In these
models, the Service phase is not considered since communication will occur strictly and
directly between the client and resource without further engagement of the Discovery
Service. Thus, the Service phase has no impact on the Discovery Service design. These four
communication models can be categorised according to two criteria. The first criterion is
whether the communication during the Discovery Phase is request/reply or
publish/subscribe. The second criterion is the direction of communication flow during the
Discovery Phase: either the client information flows towards the resource or the resource
information is passed towards the clients. It can be noted that request/reply and
publish/subscribe communication technologies often employ a mix of both paradigms. For
example, in a message queue network the client may connect to the edge message server to
request their waiting messages. However, looking at the communication pattern helps to
discuss the available options. Finally, the four abovementioned models are:

• Directory of Resources. The resources publish their availability in a directory service.
For the domain of RFID, this means key-value pairs of EPC numbers and EPCIS
addresses. This directory may be a single well-known repository, or consist of a
network of federated directory stores with a method of distributing data and routing
queries.

• Directory of Clients. The clients can register their static interests in a directory. In the
case of RFID, this represents the EPC numbers. The resources can then query which
clients may be usefully served and initiate interaction with the client.

• Notification of Resources. The available resources may multicast their availability
onto a communication medium to which the clients listen directly. The communication
medium may be a network technology (such as IP multicast), or an overlay network
(for example a Discovery Service). As previously mentioned, for RFID, the availability
of resources means key-value pairs of EPC numbers and EPCIS addresses.

• Notification of Clients. The clients multicast their resource needs onto a
communication medium which resources directly listen to. Again, for RFID, these
needs are represented by the EPC numbers of interest. Resources able to serve the
client respond and establish communication with the clients.

 Request/Response Publish/Subscribe

Client is querying;
Resource is publishing;
Client may be unknown

Directory of
Resources

Notification-of-
Resources

Client is publishing;
Resource is querying;
Resource may be unknown

Directory of Clients Notification of
Clients

Table 1: Classification of Discovery Service Models. Approaches that include an explicit

Discovery Phase.

The above Discovery Service models from Table 1 provide an explicit Discovery phase after
which the clients and resources engage directly to fulfil service. Information communicated in

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 9/38 15 August 2007

the Discovery Phase is restricted to identifying and locating clients and resources,
respectively.

There is an alternative approach where the Discovery phase is omitted. Instead, a
communication network, or federated repositories, is provided to route the service between
the clients and resources. In effect, the Discovery phase is directly combined with the
Service Fulfilment. Again, these models can be classified along the same lines: first after the
type of communication, that is, request/reply or publish subscribe and second after the
information flow, that is, from client to resource of vice-versa. In the two models where the
information flow is Resource to Client, this occurs in response to Client information recorded
during the setup phase. No further communication is required to complete Service Fulfilment.
In the two models where the communication flow is Client to Resource, a return
communication is expected to complete the Service Fulfilment. This return communication
may be returned through the Discovery Service, or through another network, such as directly
over an IP network. The four models are first briefly described and then presented in Table 2.

• Meta Resource. This approach links all resources into a federated system that can be
queried at a single point, typically using the same interface specification as the
subordinate resources. The full data set of each resource is replicated to the
Discovery Service. The single point of access is expected to be known (e.g., through
configuration of clients, effectively making the Discovery phase obsolete).

• Meta Client. All client requests are available for search which is performed by
resources via a single point of access. The Discovery Service stores full client queries
(as opposed to query keys, i.e., EPC numbers only)

• Notification of Events. The resources publish all available data onto a
communication medium. The published data is then routed to the clients. This data is
sufficient to meet the clients’ demands and thus clients do not need to establish
interactive communication with the resources. Resources and clients are effectively
decoupled. The routing of events to interested clients can be considered the Discovery
phase in this model. This model is used when the resources produce information. It
would not make sense for non-information resources such as available processor time
in a GRID architecture.

• Query Propagation. The clients broadcast their exact requests onto a communication
medium. Any resources that are able to meet the client demands respond by providing
the required serial-level data. The Discovery Service stores key-value pairs, containing
of EPC numbers and references to resources such as EPCIS.

 Request/Response Publish/Subscribe

Resource to Client Meta Resource Notification of Events
Client to Resource Meta Client Query Propagation

Table 2: Classification Discovery Service Models. An approach where the Discovery Phase is

omitted

The communication diagrams used in the following sections show the Client, Resource and
Intermediary (e.g., directory service) communication patterns during the three phases. The
numbered arcs show the order of communications. For the first four Discovery Service
models, these Discovery-phase communications are sufficient to establish a relationship
between the Client and Resource for a subsequent Service Fulfilment phase.

3.2. Initial Selection Criteria
Before describing the eight basic discovery-service models in greater detail, we will briefly
discuss the criteria to select a smaller number of models and to dismiss the rest as
unsuitable for our needs. The selected models are discussed in greater detail in the next

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 10/38 15 August 2007

section. This initial discussion is conducted in two areas: interaction mode and trust in the
Discovery Service.

3.2.1. Interaction Mode and Transience of Connectivity

Many of the questionnaire responses and interview results from the Requirements phase of
WP2 suggest that quick response times are a key requirement for a Discovery Service. It
also follows that predictable response time is required so that client applications can make
informed decisions on whether any resources are available at the time of (or soon after) their
query.

3.2.2. Data Ownership and Trust

Many respondents to both the WP2 and WP4 surveys suggested that data ownership was a
key concern. Most were reluctant to share more than the necessary minimum information
with the Discovery Service, or at least suggested that such additional sharing should be
optional. Thus we reject any model that requires the EPCIS owner to share detailed
information with the Discovery Service without first gaining details of which clients require the
detailed access and being able to refuse or negotiate this access.

In the next sections we shall discuss these eight models in greater detail, assessing where
the technology is currently used, and discussing their suitability within RFID architectures.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 11/38 15 August 2007

3.3. Directory of Resources

Figure 1 depicts the Directory of Resources model. The concrete steps are:

1. A resource publishes its availability into the intermediary. In the case of an RFID
architecture, this means publishing key-value pairs of EPC numbers and reference
resources.

2. A client queries the intermediary to receive the identity of relevant resources. For the
domain of RFID, the query contains only the EPC number of interest.

3. The identities (i.e., reference resources) of relevant and legitimately-accessible
resources for the EPC number of interest are released to the client.

4. The client separately and directly queries each received resource for detailed
information. The full query is now released.

5. A resource answers with detailed information as requested by the client.

Directory Services are extremely common to advertise clients of the availability of resources.
For example, Web Services use UDDI (Universal Description, Discovery and Integration) to
advertise their availability to client applications and other Web Services. Many middleware
platforms for software integration also use directories to publish available services to
distributed program components (for example JINI, RMI, CORBA). Directory services are
also commonly used for the registration of devices. This approach can be seen in local
machine Registry services, or directories for networked ‘plug and play’ devices.

Many of the directory services already mentioned are often constrained in terms of the
network reach and number of parties involved. One well-known global directory service for
the registration of device IP addresses and domain names is the Domain Name System
(DNS). ENUM, a suite of protocols to unify the telephone numbering system with the internet
addressing, provides a similar directory for the registration of telephony numbers. Other
global directory services can be seen in content download networks. These networks use a
distributed directory to index available content, such as music files.

It can be seen from the above diagram that the Discovery phase should be able to be
performed with very low latency for the client. Once resources have been discovered, they
may be engaged multiple subsequent times for delivery of service without involving the
Discovery Service during each interaction. The client has good visibility over each
communication and can take remedial action when individual resources fail to respond during
the Service Fulfilment phase. Of course, the access control policies asserted by some
resources may prevent a particular client from having any visibility of a particular resource.

Figure 1: Directory-of-Resources

C I R
12

3

Setup

Discovery

Service Fulfilment

4

5

Resource Availability

Publication

Directory Resource

Lookup

Resource

Engagement
Directory-of-Resources

C I R
12

3

Setup

Discovery

Service Fulfilment

4

5

Resource Availability

Publication

Directory Resource

Lookup

Resource

Engagement
Directory-of-Resources

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 12/38 15 August 2007

The Directory-of-Recourses model allows the client to control the interaction with the
directory and subsequent interactions with resources. It can thus control the exact query
issued to each of the potentially multiple resource returned by the directory individually and
adapt the query if desired.

The client can authenticate the directory before constructing the query, and in some secure
directories (such as DNS-Sec) can check the integrity of the directory record. When a client
queries a Directory of Resources, the resource is not notified of the identity or existence of
the client until the client makes a separate decision to contact that particular resource
directly. The client can then apply intelligence to decide which resources it wishes to interact
with. For example, a client would have an opportunity to make an innocuous query to each
EPCIS resource, such as a request for its current standard version number, then check the
response, address of the EPCIS resource and perhaps even verify the signature and signer
of a digitally signed response, all before the client is required to divulge to the resource which
EPCs are of interest to it. This leads to increased client confidentiality. Of course, a Directory
of Resources would need to accept, store and enforce access control policies asserted by
the resources, in order to allow the resources to control which records should be revealed to
which clients.

There are two principle problems with applying existing Directory Service technology to the
domain of RFID. The first problem is that most directories assume that the information is
either public, or visible within a controlled user group. For the publication of EPCIS resources
this will not be suitable, as data owners will desire more fine-grained controls over who can
see the information on the directory. The reason for this is that the availability of an EPC
Information Service to meet a request about an EPC is itself sensitive business information
(since it discloses the fact that the EPC has been observed and potentially allowing to
conclude which company has handled the associated item). This property is unusual in
directories of resources. Indeed, most serve published data that is supposed to be found.
The sensitivity of the data therefore represents a significant difference between EPC
Discovery Services and established Directories of Resources, such as UDDI.

The second problem is also related to security. Global scale directories such as those used
for distributed content networks or the DNS, along with other directory technologies such as
LDAP (Lightweight Directory Access Protocol), use the key for the directory entry to
determine where in the distributed directory that entry should be stored. This may be
unacceptable for an RFID network since the directory provider will control access to, and
have visibility over all resources for a particular range of EPCs. Suggestions to encrypt the
information may not be sufficient since the directory provider may still block communications.
This static division of the EPC resource space can also allow attacks against particular
companies or product ranges through Denial-of-Service attacks against the directory
resources responsible for selected EPC ranges.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 13/38 15 August 2007

3.4. Directory of Clients

Figure 2 depicts the Directory-of-Clients model. The concrete steps are:

1. The client publishes its interest in certain EPC numbers (i.e., query keys) to the
intermediary.

2. A resource looks up the keys in the intermediary to identity client queries it can serve.
3. The intermediary replies to the resource with the list of keys.
4. The resource notifies the client of its identity together with the fact that it has become

aware of the client interest and holds relevant information on the requested keys .
The notification from the resource to the client may be given directly (as shown in the
figure) or may travel through the intermediary.

5. The client separately and directly queries each relevant resource for detailed
information. The full query is now released.

6. A resource answers with detailed information as requested by the client.

In contrast to the Directory of Resources, we can take the approach of using the directory to
store the key of client queries. This is useful if client queries have a long lifetime compared to
the information stored within the resources (or if resources are only intermittently connected),
thus reducing the churn on the directory. In the Directory-of-Clients model (cf. Figure 2) a
resource notifies the client before the client engages the resource for Service Fulfilment.
While in a general model the resource could initiate the Service Fulfilment, we note that in
the current EPCglobal design the client must engage the EPCIS with a query or subscription
to a standing query.

For RFID systems we expect the resources (i.e., EPCIS instances) to be permanently
connected to the network and that the RFID event data stored in the resources typically does
not expire. Therefore the characteristics of the Directory-of-Clients model do not come into
effect in RFID systems and there is little motivation to support intermittent connectivity of
resources or to support short-lived information. Rather, we expect most client queries to be
one-off (as opposed to being long-lived, standing queries). Most supply chain scenarios will
require an immediate (or at least time bounded) response to one-off queries. With the
Directory-of-Client model, a client has no visibility or control of when resources connect to
the Directory of Clients and thus when the query will be answered. In order to reduce the
average response times, resources need to contact the directory more frequently, thus
increasing the load of the directory as well as network traffic. For the above reasons, the
Directory-of-Clients model is not suitable for the main mode of operation in RFID discovery
services. On the other hand, this model seems to be well suited for long standing client

Figure 2: Directory-of-Clients Model

C I R
1

24

3

Setup

Discovery

Service Fulfilment

Directory-of-Clients
5

6

Resource

Engagement

Client Interest

Publication

Directory

Client

Lookup

Resource Availability

Notification

C I R
1

24

3

Setup

Discovery

Service Fulfilment

Directory-of-Clients
5

6

Resource

Engagement

Client Interest

Publication

Directory

Client

Lookup

Resource Availability

Notification

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 14/38 15 August 2007

requests, for example, for the Notification-of-Events that the client expects to occur in the
future. It could therefore be used in combination with another model in order to serve both
one-off and standing queries.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 15/38 15 August 2007

3.5. Notification of Resources

Figure 3 depicts the Notification-of-Resources model. The concrete steps are:

1. The client registers its interest in certain EPC numbers (i.e., query keys) with the
intermediary.

2. A resource broadcasts its availability (i.e., its identity) and the set of EPC numbers it
holds further information about into the communication network.

3. The communication network notifies the client of the relevant resources for its
expressed interest.

4. The client directly queries each relevant resource for detailed information. The full
query is now released.

5. A resource answers with detailed information as requested by the client.

In this model, resources, such as the EPC Information Services, broadcast the availability of
EPC information to the intermediary, which is then forwarded to registered clients.
Forwarding of the notification would typically be restricted by the publisher (i.e., the EPCIS)
in the form of security controls, by the clients in the form of a subscription filter, or both. This
technology is widely available as Message Oriented Middleware often used in the field of
Enterprise Application Integration. These systems are typically limited in their coverage and
scope, although some global examples are found such as Usenet news. Academic research
has also attempted to address globally scalable publish/subscribe systems (see, for
example, [1, 2, 5, 6, 7]). More localised resource broadcast can occur using network
technologies such as a physical bus (e.g. USB), network multicast/broadcast (such as IP
multicast), or radio broadcast (for example local services advertising over wi-fi).

This model is often suggested for location-based services to preserve the privacy of clients.
A client may listen to the service broadcasts and choose whether to engage based on the
service offered and any authentication checks the client wishes to perform.

Security of such systems can take two approaches. The first is to transmit to a group
communication channel to which membership is restricted. The second approach is to not
restrict the propagation of the message, but to encrypt it so that only selected parties can
understand it. This latter approach requires the message to be transmitted with a group key.
This key must be continuously managed as clients join and leave the security group, making
it less suitable for dynamic audiences. In the first approach, security policies must be
distributed into the network to control the flow of information.

Figure 3: Notification-of-Resources Model

C I R
3 2

Setup

Discovery

Service Fulfilment

Notification-of-Resources4

5

Resource

Engagement

1

Client Interest Subscription

Resource Availability

Notification

C I R
3 2

Setup

Discovery

Service Fulfilment

Notification-of-Resources4

5

Resource

Engagement

1

Client Interest Subscription

Resource Availability

Notification

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 16/38 15 August 2007

We can consider that this communication model differs from the directory service approach
in one key manner. In the directory service, a client is expected to perform infrequent
connections to the Discovery Service and perform a query over historical resource
information. In this model the client is assumed to be continuously connected to the network
and respond in an event-driven manner to new EPC resources.

Of course each model can be extended to incorporate the characteristics of the other. For
example, a directory service can include a subscription interface along with a request-reply
communication interface. Similarly archival services can subscribe to the real-time
Notification-of-Resources to provide a historical query capability. In this manner a Directory-
of-Resources capability can be built over an underlying Notification-of-Resources model.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 17/38 15 August 2007

3.6. Notification of Clients

Figure 4 depicts the Notification-of-Clients model. The concrete steps are:

1. A resource publishes its availability (i.e. resource reference) and the set of EPC
numbers it holds further information about into the communication network.

2. The client broadcasts its identity and its interest in an EPC numbers (or set of
numbers) into the communication network.

3. The intermediary propagates the client notification to those resources which have
published a matching EPC number in step 1.

4. The resource notifies the client of its identity together with the concrete EPC number
it holds relevant information about. Multiple resources may reply to a client request.

5. The client directly queries each relevant resource for detailed information. The full
query is now released.

6. A resource answers with detailed information as requested by the client.

This model uses the same technology base as the Notification-of-Resources, namely a
publish/subscribe network. It differs because the client initiates the communication by
publishing its resource requirements (cf. Figure 4). This is similar to a query to a Directory
Service, except that the request is relayed to the resource itself (instead of being handled
autonomously by the Directory Service). Resources that are both willing and able to assist
the client may then establish communication with the client in order to serve future specific
resource requests.

When compared to the Directory-of-Resources model, the client loses a degree of control. It
must first announce some intention to engage with a resource to an unknown audience. If
resources fail to respond the client will remain ignored and cannot take remedial action. Thus
for unreliable resources and networks a Directory-of-Resources approach may be preferable
(under the assumption that such a Directory is more reliable than the resources themselves).
In contrast, the resource gains some form of control since it can choose which clients to
engage dynamically instead of attempting to set static policies for the release of its directory
or resource availability information.

Security again can take two approaches. Either the routing of the client request is limited by
security policies, or the message itself can be encrypted with a group key.

Figure 4: Notification-of-Clients Model

C I R
2 3

4

Setup

Discovery

Service Fulfilment

Notification-of-Clients
5

6

Resource

Engagement

Resource Availability Notification

Client Interest Notification

1

Resource Availability

Subscription

C I R
2 3

4

Setup

Discovery

Service Fulfilment

Notification-of-Clients
5

6

Resource

Engagement

Resource Availability Notification

Client Interest Notification

1

Resource Availability

Subscription

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 18/38 15 August 2007

The resources, as receivers of the communication, are expected to be continuously
connected to the network to receive client demands. However, this model, when compared to
the Notification-of-Resources model allows clients to be more transient in their connection,
although the Directory of Resources also allows this transient client behaviour. It may also be
preferable in terms of network traffic if there are fewer client requests than resource update
events.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 19/38 15 August 2007

3.7. Meta Resource

Figure 5 depicts the Meta-Resource model. The concrete steps are:

1. Each resource replicates its entire information set into a central intermediary (e.g., a
data warehouse), which combines information from multiple resources. The
intermediary stores the full data set of all resources connected to it.

2. The client queries the data warehouse for detailed information. The full query is
specified.

3. The data-warehouse provides the client with the detailed information it solicited.

This model, depicted in Figure 5, combines multiple resources into a single physical
resource. This can take the approach of data-warehousing for information resources, where
all data is replicated to a single repository as shown in the diagram above. This model is
popular for data consolidation within a single enterprise.

In the case of the EPCglobal network, data of multiple companies would need to be
replicated into a central repository to serve all client requests. This implies a very high
degree of trust in the intermediary. It would also require the intermediary to handle very high
volumes of continuous updates from resources and store the associated volumes of data.
For the above reasons the Meta-Resource is not suitable for RFID discovery services.

Alternatively, the Meta-Resource model may be combined with the Query Propagation model
(see below). In this hybrid approach some resources may only provide a link instead of
replicating the resource data. The intermediary propagates the query to the relevant
resources. The resources then answer the query through the intermediary, which then
aggregates them into a single reply to the client. In this hybrid approach the interface
presented to the client remains consistent with the Meta-Resource model; the actual
mechanics are transparent to the client. Aggregation of replies is optional in the Query-
Propagation model, as discussed later.

C I R
12

3

Setup

Discovery

Service Fulfilment

Meta-Resource

Resource

Replication

Service Request

Service Response

Figure 5: Meta-Resource Model

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 20/38 15 August 2007

3.8. Meta Client

Figure 6 depicts the Meta Client model. The concrete steps are:

1. The client registers the full query with the intermediary.
2. The resource looks up the available queries in order to identify which client queries it

can serve.
3. The intermediary replies with the set of stored queries.
4. The resource directly contacts the client with the complete query result.

Whereas in the Directory-of-Clients model clients register broad interests (i.e., EPC numbers
of interest), in the Meta-Client model (cf. Figure 6) clients register their fully specified queries.
The resources, which may be intermittently connected, fetch these specific requests and can
decide to act upon them.

This model is unsuitable as the main mode of interaction between clients and resources, that
is, for one-off queries that are expected to be answered immediately. As in the Directory-of-
Clients model, also in this model clients have no control of when and how often resources
poll for client requests and thus become aware of a client request. The problem is intensified
as different resources are likely to have individual polling schedules and thus the client
cannot predict when it has received the complete response of all resources. On the other
hand, this model seems to be well suited for long standing client requests, for example, for
the Notification-of-Events that the client expects to occur in the future.

Figure 6: Meta-Client Model

C I R

2

3

1

4

Setup

Discovery

Service Fulfilment

Meta - Client

Service Request Query Service
Request

Service Response

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 21/38 15 August 2007

3.9. Notification of Events

Figure 7 depicts the Notification-of-Events model. The concrete steps are:

1. The client registers its specific and full query with the communication network. The
intermediary thus stores full client queries (as opposed to query keys, i.e., EPC
numbers only).

2. Each resource replicates its entire information set into the communication medium / a
central repository.

3. The relevant and legitimately-accessible information is routed to clients according to
their expressed interests.

Using the same technology base as the Notification-of-Resources models and Notification-of-
Clients models, this approach (cf. Figure 7) differs by the fact that resources publish the
information they hold onto the communication medium (either periodically or only once on
becoming available). The information is then routed to interested clients, which have
previously registered their interest with the intermediary. Direct interaction between the client
and resource is not required. This model is common in information dissemination where we
need to inform a large number of permanently connected receivers who may wish to respond
immediately to an event.

The intermediary may also archive historical events and replay them on client request [9].
These archives support infrequently connected clients and are used to analyse long-term
patterns in the event data. This model therefore is often used for the collection of sensor
information. Such event archives may be considered as providing a hybrid with the Meta-
Resource model discussed previously.

This model may be inappropriate for inter-organisational RFID systems due to the loss of
fine-grained control by resources over the data. Manageable security policies are long-lived
and thus control only broadly which receivers are allowed to receive what data. Dynamic
changes to these policies, of policies that define security access based upon many attributes
of the data are considered non-scalable.

Also such a model implies a higher degree of trust in the communication network, since
much more information is being released.

Figure 7: Notification-of-Events Model

C I R
3 2

Setup

Discovery

Service Fulfilment

Notification-of-Events

1

Service Request Subscription

Service

Response Event

Resource

Event

C I R
3 2

Setup

Discovery

Service Fulfilment

Notification-of-Events

1

Service Request Subscription

Service

Response Event

Resource

Event

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 22/38 15 August 2007

3.10. Query Propagation

Figure 8 depicts the Query-Propagation model. The concrete steps are:

1. The resource publishes / registers key-value pairs containing EPC numbers and
resource references to the intermediary.

2. A client issues a full query into the communication network.
3. The client query is selectively propagated to only those resources that are known to

hold relevant information.
4. A resource answers at its own will with detailed information as requested by the

client. The response from the resource to the client may be given directly (as shown
in the figure) or travel through the intermediary.

Similar to the Notification-of-Clients model, Figure 8 depicts the Query-Propagation model in
which the client releases to the intermediary a full resource query, which is sufficiently
detailed to be answered by resources directly. The intermediary propagates the query to
those resources that hold relevant information to answer the query. As in the Directory-of-
Resources model, the intermediary stores the information (i.e., EPC numbers) about who
has relevant data for a query. This information is released by the resources as part of the
setup phase, which can be seen as the subscription for client queries.

In this model, the intermediary directly propagates client queries to relevant resources,
allowing them to reply without delay. The model also supports clients to only transiently
connect during Service Fulfilment. Information providers are (as in most of the other models)
required to publish the EPC numbers they hold more information about, however, these
numbers are never directly revealed to clients. Rather, resources stay in full control over
what data they release to which clients. Access control to the resources’ data is performed
by the resources themselves. Also, resources can directly log all attempts (successful or
failed) to access their data. As in any other model storing data on behalf of resources, this
model requires trust in the intermediary not to reveal any of this data.

In this model, some form of access control to the intermediary (e.g., based on credentials
passed with the client request) is still required to protect against, for example, malicious
clients using the propagation functionality to overload resources (i.e., in denial-of-service
attacks). Access control in Query Propagation serves a different function to that found in the
Directory of Resources, where access control is used to restrict the release of resource
information.

Figure 8: Query-Propagation Model

C I R

2 3

4

Setup

Discovery

Service Fulfilment

Query Propagation

Service Request

Service Response

1

Resource Capability Subscription

C I R

2 3

4

Setup

Discovery

Service Fulfilment

Query Propagation

Service Request

Service Response

1

Resource Capability Subscription

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 23/38 15 August 2007

3.11. Summary and Conclusion

In the previous section we have outlined for completeness all possible communication
models according to our taxonomy characteristics. We have dismissed several of these
models as unsuitable for further in-depth investigation. As stated earlier, the selection was
made on two criteria: interaction mode and trust in the Discovery Service and network. The
table below summarizes our selections.

Model Client Trust Resource
Trust

Response
Latency

Status

Directory of Resources Good Concern Good Candidate
Directory of Clients Concern Good Poor Reject
Notification of Resources Good Concern Good Candidate
Notification of Clients Concern Good Concern Candidate
Meta Resource Good Poor Good Reject
Meta Client Concern Good Poor Reject
Notification of Events Good Poor Good Reject
Query Propagation Concern Good Concern Candidate

3.11.1. Interaction Mode and Transience of Connectivity

Interaction models that require the EPCIS to poll for potential clients are rejected for the main
mode of operation, that is, for one-off queries. These are the Directory-of-Clients and Meta-
Client models, because they are suited more to transient resources than transient clients.

3.11.2. Data Ownership and Trust

We rejected any model that requires the EPCIS owner to share detailed information with the
Discovery Service without first gaining details of which clients require the detailed access
and being able to refuse or negotiate this access. For these reasons we also reject the Meta-
Resource and Notification-of-Events models. The following table summarizes the types of
data that needs to be stored at the intermediary in order for it being able to complete
discovery. Note that this data is not necessarily shared with the client or resource,
respectively.

Model Type of data stored at intermediary to complete discovery

Directory of Clients clients’ query keys (i.e., EPCs)
Notification of Resources clients’ query keys (i.e., EPCs)
Meta Client full client queries
Notification of Events full client queries
Notification of Clients resource keys (i.e., EPCs) and resource refrences
Directory of Resources resource keys (i.e., EPCs) and resource refrences
Query Propagation resource keys (i.e., EPCs) and resource refrences
Meta Resource

n/a (no discovery phase, since all data of all resources
replicated)

In the following section we present two RFID Discovery-Service design alternatives, which
are built based on the candidate models selected in this section.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 24/38 15 August 2007

4. Selected Discovery Service Designs
The initial selection from the previous section leaves four models remaining for consideration
and design development. The Directory-of-Resources and Notification-of-Resources models
vary only in whether the client is predominantly request/reply or publish/subscribe. From the
questionnaire and interview results we see that clients will require operation in both of these
modes. Thus for the remainder of this document we consider these two models to be
combined to provide a Directory Service with a notification capability for publish/subscribe
operation. Henceforth we shall refer to this solely as the Directory Service design.

The remaining two models involve the client sending requests via an intermediate network to
the permanently connected resources. In the Notification-of-Clients model, the client sends
the minimum credentials and statement of interest to start a negotiation over finer grained
access to the resource at a later time. In the Query Propagation model, the detailed resource
access request is transmitted directly without the former negotiation phase. We can consider
that these two models are not entirely disjoint, since in the former case, some indication of
the subsequent access requests will be included. For an RFID system, this indication may
consist of the EPC numbers that subsequent requests will include in their request for detailed
EPCIS events. In this section we will discuss these models together under the category of
Query Propagation design (with a more general client request being considered as a sub-
design).

In the remainder of this section we present and discuss the two alternative Discovery Service
designs. In the discussion we will further elaborate on the criteria that we used for the
selection of the initial models. Furthermore, we will take into account various aspects that we
have omitted in the initial discussion, such as scalability, performance, and resilience.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 25/38 15 August 2007

4.1. RFID Directory Service

The Directory Service design discussed in this section combines the Directory-of-Resources
and Notification-of-Resources models, which are repeated below for the reader’s
convenience.

Figure 9 shows the operation of a directory-based Discovery Service within an EPC RFID
Architecture. The resources, consisting typically of EPC Information Services (EPCIS),
publish selected information to one or more Discovery Services. The information may be
replicated across multiple Discovery Services for dissemination to different business
communities, or for redundancy. Replication of information and federation of Discovery
Services are not discussed here.

EPC-IS 1 EPC-IS 2

DS

EPC-IS 3

Client

XXX456

DataEPC

XXX456

DataEPC

YYY123

DataEPC

YYY123

DataEPC

ZZZ123

DataEPC

ZZZ123

DataEPC

EPC IS-2123

EPC IS-1456

EPC IS-3123

ResourceEPC

EPC IS-2123

EPC IS-1456

EPC IS-3123

ResourceEPC

Who has information

on tag 123?
EPC IS-2123

EPC IS-3123

ResourceEPC

EPC IS-2123

EPC IS-3123

ResourceEPC

4

Directory Service

5

321

Results returned from DSClient queries DS

EPC-IS

registrations
with DS

C I R
3 2

Setup

Discovery

Service Fulfilment

Resource Notification4

5

Resource

Engagement

1

Client Interest Subscription

Resource Availability

Notification

C I R
12

3

Setup

Discovery

Service Fulfilment

4

5

Resource Availab ility

Publication

Directory Resource

Lookup

Resource

Engagement
Resource Directory

Figure 9: Operation of a directory-based Discovery Service within an EPC RFID
architecture.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 26/38 15 August 2007

Querying DS
The client may query the Discovery Service using a query interface, similar to that specified
in the EPCIS standard, but including at least an EPC (or EPC list/range). This may consist of
a one-off query, or a standing query resulting in a subscription to the Discovery Service. In
the latter case, any new publication of records to the Discovery Service will be compared
against the list of current subscriptions. Where client subscriptions match (and subject to
security constraints) these new records are notified to the waiting clients (or delegated to
message queues).

Any client query can be answered immediately (subject to security negotiations) by the
Discovery Service without recourse to additional parties. The EPCIS resources do not have
to be available at the instant of the client query. This allows for mobile or intermittently
connected EPCIS resources, although the advantage is unclear as the EPCIS must be
available at a later time to respond to the client’s EPCIS query. However, this is still an
advantage over a total lack of Discovery Services, where end-to-end
traceability/completeness might be severely reduced if one intermediate EPCIS within the
supply chain fails to respond and is on the critical path for providing an onward link in an
approach where each EPCIS links to the next in the chain. It also means that a Discovery
Service is not required to maintain the client session while communicating with onward
systems. This can aid scalability and resistance to denial-of-service attacks and reduce the
latency of the response to the client.

The minimal information published to a Discovery Service must be the EPC, that is, the
unique identification number associated with the RFID tag, along with a link that can be used
to communicate with the resource. For a web-service interface to an EPCIS this would
consist of the location of the Web-Service interface description.

Querying EPCIS
In response to a client query, a list of EPC numbers and associated links to EPCIS instances
are returned to the client. Subsequently, the client directly contacts one or multiple of the
returned EPCIS instances. This process can be a burden for the client when several EPCIS
instances need to be contacted. If some EPCIS instances are slow to reply (due to network
traffic or server load) receiving the complete reply to a query can take significant time.
Therefore, it may be required to issuing the individual request in parallel which increases the
software complexity as connection state needs to be maintained. On the other hand (and as
discussed previously), the client is in full control of its requests and may choose to alter the
query in subsequent requests or may choose to abort the request altogether. This is
particularly useful if all or part of the answer has been returned to the client in a request to a
previous resource in the list of returned resources. If the complete set of replies by all
resources is not required, this mode can reduce the query speed compared to, for example,
the Query-Propagation model where always the full set of replies is returned.

Data ownership consideration
Access to Discovery Service data records must be permitted by both the operator of the
Discovery Service, and the owner of the resource records. Thus the client must have a trust
relationship with both the Discovery Service and the EPC resources that publish records to
the DS. Clients that are unknown to a resource are unlikely to be granted access to the DS
records about that resource. A mechanism is required either to introduce potential clients to
resources, or to establish trust through intermediate parties. For example, a resource may
trust clients that have obtained membership of a particular group or federation. The DS may
implement such a mechanism, or rely on wider trust establishment mechanisms such as
those being developed for Web Services (e.g., Liberty Alliance [10] and WS-Federation [11]).

Once records are retrieved from the DS, the client has the reciprocal problem of whether the
EPC resource (e.g., EPCIS) is trusted. The EPC resource also has to trust the client to
release the EPC trace data. If sufficient relationships do not already exist as a result of

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 27/38 15 August 2007

gaining access to the Discovery Service, then the client and EPC resource will need to
negotiate a further trust relationship."

Advanced Queries
Although in the ‘pure’ directory service model only the resource refrence must be published,
optionally additional information may be included, to provide business context. Such
information may allow more intelligent matching of resources through the use of more
expressive client queries. For example, instead of just fetching all resources that have
information on a particular EPC, the client may restrict the set of results by specifying the
type of event, for example, the business step (encoded in the field bizStep in EPCIS v1.0) for
which it is interested. To allow more intelligent matching of client queries at the Discovery
Service level, resources need to reveal more than the minimal set of data to the Discovery
Service. Sharing additional data over the minimal set is often considered a trust problem by
information providers. Either the publisher of the record to the Discovery Service, or the
Discovery Service itself may supply additional meta-data. For example the publisher of the
record may provide an event time, while the Discovery Service may maintain the time at
which the record was submitted.

Enforcing Security Policies
The directory-based Discovery Service must maintain a number of security policies. Its own
policies will specify who can publish information to the Discovery Service, and what
information they may/must publish (e.g., which EPCs and mandatory additional fields such
as a signature). The Discovery Service may also broadly specify the clients that are allowed
to use the service. Additionally it is expected that the Directory Service will delegate the
ability to define security policies to the publishers of the Discovery Service records. This will
allow the publishers to maintain fine-grained control over which clients can see which records
(and individual record attributes).

In this manner, the Discovery Service acts as a trusted broker between the client and the
EPCIS resource. The resource will not find out about the client interests until the point at
which the client initiates direct communication with the EPCIS. The, client similarly, will not
discover the EPCIS resources unless the security policies allow them to do so.

As mentioned before, the necessity to protect the sensitive data records that are stored in the
Discovery Service from unauthorised client access requires enforcing access control on the
level on the Discovery Service. This means that access control is effectively duplicated, once
in the Discovery Service and once again for the subsequent query in the EPCIS. Note that
this duplication of access control does not provide additional security; it is merely to protect
the replicated data. (In fact, the Discovery Service is an additional target for attackers.)

One issue of duplicated access control may be that EPCIS instances must carefully maintain
the consistency of access control policies for itself and for the Discovery Service. If a
company decides to modify its access control policies, immediate propagation to the DS is
also required. In order for EPCIS instances to maintain their policies, a standard for
describing the semantics and maintaining access control policies need to be part of the DS.
Such a standard increases the complexity of the EPCIS and DS software as well as that of
the standardisation process.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 28/38 15 August 2007

4.2. RFID Query Relay
The Query-relay directory service design discussed in this section combines the Query-
Propagation and Meta-Client models. The graphical representations of the interaction
models from the previous section are repeated below for the reader’s convenience.

The key idea of this design is to not reveal any of the resources’ data to clients (i.e., EPC
numbers and resource references stored in the intermediary) but to instead propagate client
queries to the resources. Thus, the main mode of operation of this discovery-service design
employs the Query-Propagation model. That is, the Query Relay forwards client queries to
waiting resources (i.e., typically EPCIS instances), which can then answer the query directly.
Alternatively, the Query Relay also supports subscriptions of client queries, following the
Meta-Client model. That is, the query may take the form of a standing query for which a
subscription is maintained (and stored) by the intermediary. Standing queries are forwarded
to resources as soon as they register new events matching the query; the standing query
then travels piggy-backed on the resource’s availability publication (see step 3 in the figure
depicting the Meta-Client model above).

The client query itself can take two forms, (1) a resource query to identify relevant resources
for specified EPC numbers or (2) a full query directly returning the desired query result. The
resource query (as previously described in the Notification-of-Clients model) is the preferred
query mode for clients with a long-lasting interest in certain products and which expect
further queries on the same EPC number. In this case, clients may chose to maintain a local
cache of EPC numbers and the associated resources already identified rather than
repeatedly placing resource queries to the DS. This approach requires the client to
subsequently post the full query to the identified resources. From a client perspective, this
mode resembles the Directory-Service design. (It may even be indistinguishable from it if the
replies travel through and are aggregated by the intermediary, an option which we will
discuss below). The full query (as previously described in the Query-Propagation model) is
useful for one-off queries, that is, when clients expect no need for further queries on the
same EPC number. An example could be a lost and found application for finding lost
reusable assets.

In this model, the intermediary may be realized as a single server. Or it may be realized as a
network of federated servers, for example, for load balancing. The latter approach is
common in publish-subscribe overlay networks [cf. 1 - 7]. As with the Directory-Service
model discussed in the previous section, many such networks may exist to serve the needs
of different communities, and ECPIS resources may be registered to receive requests over
multiple networks.

C I R
1 2

3

Setup

Discovery

Service Fulfilment

Query Propagation

Service Request

Service Response

1

Resource Capability Subscription

I C R

Resource availability

publication

1 3

2

4

Client

query

Query response Meta Client

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 29/38 15 August 2007

Figure 10 shows the basic operation of the Query Relay. ECPIS resources register to receive
client queries at one or more Query Relays. This registration specifies the EPC numbers
(i.e., keys) the EPCIS resource holds information about plus a reference to the resource.
This may optionally include further routing data (i.e., secondary keys), for example, the EPC
event type (i.e., bizStep) to allow more selective routing of client requests. This is desirable
to reduce network traffic and to relieve EPCIS resources from queries that they cannot
answer.

Relaying Queries
Relaying the client’s query has the advantage that EPCIS resources retain full data
ownership, that is
(1) Resources stay in full control of which of their data is released to whom because only

they control the access to their data. No data from resources is revealed to clients
directly.

(2) Resources can log all (successful and failed) attempts to access their data.
(3) Resources can deny access to certain clients without making the client aware of it,

following the lines that access control policies are typically considered sensitive data.

Relaying queries on behalf of the client also relives the client from having to connect to and
access the relevant resources directly. Without increasing the software complexity of the
client, the Query Relay could implement dynamic strategies for parallel querying multiple
resources concurrently and for to cope with the idiosyncrasies of the network, intermitted
disconnects, as well as with slow and unresponsive clients. There is a tradeoff between the
client’s convenience and the client’s ability to control the query process, for example, to
modify and abort the query when partial results have been received (as is possible in the
Directory Service design).

EPC-IS 1 EPC-IS 2

QPN

EPC-IS 3

Client

XXX456

DataEPC

XXX456

DataEPC

YYY123

DataEPC

YYY123

DataEPC

ZZZ123

DataEPC

ZZZ123

DataEPC

EPC IS-2123

EPC IS-1456

EPC IS-3123

ResourceEPC

EPC IS-2123

EPC IS-1456

EPC IS-3123

ResourceEPC

Who has information

on tag 123?

4

Query Propagation

Network

32
1

Client queries QPN

EPC-IS

registrations
with QPN

Query Routing Table

5 5

Figure 10: Operation of a Query Relay within an EPC RFID architecture.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 30/38 15 August 2007

Routing Replies
There are two principal alternatives of routing the query response back to the client. Firstly, a
queried EPCIS can establish direct connection to the client in order to convey the query
response, bypassing the discovery service. For example, the responses may be routed over
a VPN or the Internet to the client’s IP address. This approach is shown in the figures
depicting the Query-Propagation and Meta-Client models above. In the second alternative,
the query response is routed through the Query Relay. This may be achieved in two ways.
The first approach is to maintain session state in the Query Relay for each client request.
This state is used to direct the query responses back to the client. The session state can be
dropped when the last response has passed through the Query Relay. A second approach is
to include the client’s return address in the resources’ response. The Query Relay can then
use the address to pass the query response back to the client without having to keep session
state.

Routing the reply via the Query Relay allows the consolidation of the responses from multiple
EPCIS resources. It also allows decoupling of client and resources, for example, to hide the
client’s network address from EPCIS instances and vice versa. It also allows the
consolidated responses of multiple resources to be returned in a single (possibly
synchronous) reply to the client. On the other hand, maintaining session state adds
complexity to the implementation of the Query Relay and may be disadvantageous in terms
of scalability.

Routing the replies through the Query Relay without session state but only based on the
client address instead complicates consolidation of replies since the discovery service cannot
determine how many (if any) responses are expected. Sending the reply directly from the
resource to the client and bypassing the discovery service, however, has the advantage that
no additional data is revealed.

Receiving Replies
If query responses are returned to the client without consolidation in the Query Relay (either
if sent directly from resources to the clients or if routed through a stateless Query Relay),
clients need to receive and combine the potentially multiple replies. Receiving and combining
replies in the client is an iterative task, involving two trivial steps: (1) accepting a reply
message from the network and (2) consolidating it with all previously received messages.
However, there is a fundamental problem with the timeliness property of the system. If the
client has no indication of how many replies to expect, it cannot decide the termination of the
query, that is, if and when all replies of resources willing to reply have received by the client
or if particularly “slow” replies are still underway.

Note the fundamental difference between slow replies and replies withheld by resources.
Withheld replies are not meant to be delivered to the client, nor is the information that a reply
has been withheld in the first place. (If that information was to be given to the client, the
resource can trivially do so by returning a special reply.) For slow replies, however, all parties
have an interest in communicating this information.

In principle a client would have to wait forever for replies that still might come. A partial
solution is to return to the client the number of actual resources the query has been
forwarded to by the Query Relay. This number can be trivially provided by the Query Relay in
the return communication with the client. The client can now decide termination if and only if
all resources reply “in time”. However, the client can still not decide termination if there are
withheld replies since they are distinguishable from slow replies. Moreover this approach
may be considered harmful as the client knows the actual number (albeit not the identity) of
resources holding more information on a particular EPC even though some resources may
have declined to interact with the client.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 31/38 15 August 2007

A common and pragmatic solution approach is to use timeout intervals after placing the initial
query. This approach assumes that after the timeout all replies have been received. Though
easy and efficient to implement, the client faces the danger of disregarding potentially
important but slow replies.

Client Confidentiality
In the Query-Relay design, clients either release queries containing EPC queries only or full
queries. Therefore the intermediary must be trusted to manage the confidentiality of the client
requests. Typically more than the relevant resources will gain visibility of the client query, that
is, more than are able to respond meaningfully.

Enforcing Security Policies
Like the directory model, the Query Relay will implement security policies. These policies will
determine which EPCIS resources are allowed to register with the Query Relay for which
EPCs and other associated routing data. They will also determine which clients are allowed
to submit queries to the Query Relay, and may optionally constrain the parameters of the
query or the response messages that are allowed.

Access control policies for the Query Relay serve a different function compared to the
Directory-Service model. In the latter they are used to protect the confidentiality of the
resource, that is, to protect access to the resources’ sensitive data (EPCs and resource
references) from unauthorized and potentially harmful clients. To serve this function they
may need to be very fine-grained. In the Query Relay, access control policies are intended to
protect the systems from denial-of-service attacks and to reduce the query traffic reaching an
EPCIS. This may be achieved with relatively light-weight access control mechanisms.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 32/38 15 August 2007

5. Analysis of Design Candidates

Having presented and discussed two candidate designs in the last section, in this section we
will discuss further topics of interest in the design and implementation of discovery services
for RFID. We will frequently revert to the previous discussions to illustrate additional points
and suggest implementation options as well as future work.

5.1. Security and Trust
The different communication models critically affect the underlying security properties of the
system and the steps that must be taken. In this section we discuss a number of security
considerations and how these might affect the choice of communication model and the final
design of a Discovery Service. There are a variety of security requirements that may be
considered when designing a Discovery Service.

Client Confidentiality
Client confidentiality refers to the characteristic of the system to not reveal sensitive client
information to third-parties. In the case of RFID discovery services, the client query is
typically considered confidential client information. Revealing the client queries to potential
attackers would allow them to analyse the queries and contained EPC numbers. Such an
analysis could allow them to gain insight on the physical objects (identified by the EPC
number in the query) handled within the client’s organization and the business steps
performed within the client’s organization.

The client of the Discovery Service submits credentials (such as their identity or role) along
with their expressed interest (EPC query) to the Discovery Service. The Discovery Service
may also have visibility over lower layer network addresses that the client uses.

The Directory Service acts as a trusted broker between the client and the resource. If the
resource’s access control policy on the Directory Service is not fulfilled, no information is
exchanged between the client and resource. If the access control policy is fulfilled then the
network address of the EPCIS is released to the client to then initiate contact with the EPCIS.
No further information need be released (unless desired and specified by the resource’s
access control policy).

In the Query Propagation model the client credentials and EPC interests are released to all
resources that have expressed (and been allowed) to register an interest in receiving such
communications, basically by pretending to possess information on a certain EPC number.
The Publishers who receive such client information can be grouped into four categories:

1) Those who hold no legitimate information about an EPC
2) Those that have no information relevant to the client, but do hold other legitimate

information on that EPC
3) Those who hold information relevant to the client but choose not to respond
4) Those who hold relevant information and respond to the client

To improve client confidentiality we may wish to restrict those resources that fall into
category 2 by allowing finer-grained registrations of the EPCIS resources to the network.
Additionally the network, in conjunction with clients, should attempt to police those resources
that fall into category 1. It should be noted that a resource in category 1 is not necessarily
malicious, but may instead be managing the scalability of its registration with the Query
Propagation network through subscribing to a range of EPCs where it may not hold
information on every EPC in the range. From the consideration of client confidentiality such
behaviour should be discouraged. Discovery Services may even need to make use of
auxiliary data analysis tools to intelligently check the plausibility of the records asserted by a
publisher in order to detect and prevent such behaviour at the time when records are

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 33/38 15 August 2007

published. For example, it might check that a resource owner cannot claim to have had
custody of an EPC during a time period that overlaps with the period when another resource
owner claimed to have custody of the same object.

A pragmatic and easy approach to improve the client confidentiality of Query Relays is to
allow clients to use blacklist or whitelists. Blacklist can be used to prevent the forwarding of
client queries to the known set of competitors and dubious resources. This approach is
limited since typically not all of them are known. Whitelists, on the other hand, can be used to
restrict forwarding the query to the set of trusted business partners. The drawback of this
approach is that unknown yet trustworthy resources that have relevant information regarding
the query could not be found. Blacklists and whitelists could be sent with a particular client
query or be stored and maintained by the client in the Query Relay.

Resource Confidentiality
The EPCIS resource submits credentials (such as their identity) to the Discovery Service,
along with information selected from the EPCIS repository (such as EPCs recorded). The
Discovery Service also has visibility over the resources' network addresses. Any access
policies submitted by the resource are also confidential information.

In the Directory Service model, the release of resource information to clients should be
controlled through access policies. These policies will cover both the desires of the Discovery
Service, and the resources. Each publisher of resource records to the DS should be able to
create policies that control access to their own records. The DS-controlled policies specify
the overall behaviour of the DS service irrespective of the data records and will over-ride any
publisher policies. For example, the DS may specify that a regulator is permitted to see any
published records within an EPC range. Publishers should be aware of such policies before
releasing data to the DS. The resource confidentiality may be compromised if the resource's
security policies are not fine-grained enough, or are not kept up-to-date with the resource's
actual desires. Thus scalability and management of the security policies should be a prime
consideration for a Directory Service. In the Directory Service model it is hard for a resource
to receive requests for permission to access its DS data records from unknown clients since
the availability and contact address for the resource will be protected by the access policy.
Methods to address this problem include releasing a temporary network address for the
resource or other point at which negotiation for access can take place.

In the Query Propagation network, the resource is able to decide without delegation to the
Discovery Service, whether to engage with the client. It will have access to the most
complete and up-to-date security policies, and may also include dynamic information (such
as resource load) in the decision. This model may also work better when unsolicited client
communications are encouraged.

Information Integrity
Any information stored within the Discovery Service should not be able to be compromised.
Directory records and routing tables should only be erased or modified according to security
policies. It is expected that the resource publishing this information will retain the right to
modify or delete this information, although this may be over-ridden by Discovery Service
policies (for example to maintain a journal for regulated supply chains).

Information integrity is not directly addressed by the presented DS designs. Additional
mechanisms to enforce information integrity need to be employed. For example, in the
Directory Service model, where resource information is returned to the client, such
information may be digitally signed in order to authenticate the origin. Similarly for the Query
Propagation model, the client query may also carry the client signature.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 34/38 15 August 2007

Service Availability
The Discovery Service should be designed to be resilient to Denial-of-Service attacks, such
as network bandwidth denial. Furthermore the design should not compromise the clients or
resources in terms of such attacks.

The Directory Service is involved in the initial EPCIS address lookup and then not further
involved in the interaction between the client and EPCIS resources. Attacks on the
availability of the Discovery Service will not prevent clients communicating with EPCIS
repositories. Clients may also easily change their network addresses without significant
repercussions. The EPCIS address is only released to clients fulfilling the access policy
restrictions, helping prevent attacks on the EPCIS. Where the address of the EPCIS interface
is compromised and subject to Denial-of-Service attacks, the Directory records may be
updated to reference a new EPCIS location. To be able to make such changes efficiently,
this suggests a need for any model to be able to decouple the current (and possibly mutable)
EPCIS address of a resource from its immutable resource ID, rather than embedding the
EPCIS address within the record. This has further implications for records that are digitally
signed by the resource owner.

In the Query-Relay design, if clients typically rely on full query mode (i.e., the Query-
Propagation model) they are particularly dependent on the availability of the discovery
service. In this case the client’s local cache (if one is maintained at all) would probably be
incomplete since it would be based on previous detailed queries.

Attack Scenarios
Attackers could misuse a Query-Relay discovery service as relay for fake queries in order to
launch denial-of-service (DoS) attacks on EPCIS repositories. For example, attackers may
construct queries to load EPCIS instances that handle particular products. Potential
countermeasures include authenticating clients before allowing them to use the discovery
service and enforcing maximum rates of queries per client and per resource.

An attack scenario relevant for both discovery service designs is the registration of inexistent
EPCIS instances addresses for already assigned EPC numbers. This attack could increase
the network load and delay the query response since connections to inexistent services are
typically only dropped after a timeout and several repeated connection attempts. For the
same reasons this attack could also increase the load to query actual resources for clients of
the Directory-Service discovery service and for the Query-Relay discovery service itself. For
the Query Relay only the discovery service itself is affected since clients are only notified
after successfully contacting resources. As a countermeasure, the Query Relay and each
client of Directory Service could identify resources that fail repeatedly when making queries
and remove them from the resource cache (or blacklist them). In variation of this scenario, an
attacker could register arbitrary service addresses for assigned EPC numbers in order to
launch DoS attacks on them. A potential countermeasure is the authentication of resources
before allowing them to register EPC numbers and resource references.

Another attack scenario relevant for both discovery service designs is the impersonation of
other clients by malicious clients. By posting a query with an assumed identity of a known
client, an attacker could lead EPCIS instances (or the DS itself) to deduce that a particular
item has been observed by the real client or at a particular location. Such attacks may be
used, for example, to disrupt legal or trigger unjustified anti-counterfeiting investigations (as
discussed in BRIDGE’s work package 5). Countermeasures include authentication of DS
clients.

Interworking with NATs and Firewalls
The Discovery Service Design should be able to work in harmony with network middleboxes
such as Network Address Translators and Firewalls. Failure to allow clients to operate
behind such middleboxes will compromise the ability to use the Discovery Service. NATs use

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 35/38 15 August 2007

information on the outbound communication (from client to Discovery Service) to route the
response(s) back to the client. Stateful firewalls also match returning traffic with outbound
addresses. Responses coming from unexpected network addresses will pose problems for
companies operating private address spaces or firewalls. A solution is to provide a client
proxy with a public network address and allow incoming traffic from unknown addresses to
this proxy. The traffic can then be routed to the client after inspecting the response (e.g.
using a session identifier).

This problem is simplified if responses are returned directly in response to the client request.
Thus the Directory Service model, or a Query Propagation model where the responses are
routed via the Query Propagation network may be preferred. It should also be noted that any
solution using a message transport network may suffer a similar problem since the network
address of the response will be that of the message router.

Management of Access Control Policies
Key to all designs is the ability for the Publisher to manage the permissions for clients to
access the Discovery Service and reach the EPCIS repositories. We should not forget that a
similar set of access control restrictions are also required on the EPCIS since in any model
communication may be routed directly to the EPCIS from external clients. Another set of
access control permissions also exists to manage which resources may register with the
Discovery Service.

In the Directory Service model the resource requires the ability to provide detailed policies to
be enforced by the Discovery Service so that the Discovery Service may act as a trusted
broker to handle client requests without contacting the resource. These policies may be
considered to be a subset of the policies required by the EPCIS as any client with
permissions to access the EPCIS should also have access to the Discovery Service. Thus,
although the policy state held by the Discovery Service is considerable, the management
problem can be considered to reduce to be an incremental cost above that required for
managing the EPCIS access policy and it may even be possible to develop a common
framework for expressing and enforcing access control policies, which can be applied at both
the EPCIS and Discovery Service layers.

In comparison the Query Propagation network uses the policies stored at the EPCIS
resource. In addition, resource policies may be pushed into the network to reduce the load
on the resource, although these policies may be much less granular or less specific to
individual records.

Both the Directory Service and Query Propagation models also have Discovery Service
security policies. The control over which clients may use the Discovery Service is similar in
both cases. Failure of security policies to restrict the registration of the resource in each case
is slightly different. A particular concern is an impostor resource or ‘honey pot’ whose primary
purpose is to harvest information about client queries. In the Directory Service, the address
of such a ‘honey pot’ EPCIS resource location will be released to the client. In the Query
Propagation model this may also be true, but additionally the client request is visible to the
‘honey pot’ EPCIS resource. In the Directory Service model the client has the opportunity to
apply an additional level of scrutiny before contacting the EPCIS resource directly.

5.2. Network Performance and Resilience of Design Candidates
The choice of communication model also critically affects many issues around the service
performance, network load, resilience, and scalability of the design. In this section we
discuss some considerations that should be taken into account when designing the
Discovery Service. There are a variety of scalability and performance factors that may be
considered when designing a Discovery Service.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 36/38 15 August 2007

Persistent state on the Discovery Service
We can consider simply the state that the Discovery Service is required to store in long term
memory, yet be able to retrieve for processing and response for immediate queries from
clients. This state includes the Directory Service EPC data records, along with security
policies. It also may include long-term subscriptions to new Discovery Service records. In the
Query Propagation network, again the security policies and routing tables are long-lived. In
the Query Propagation network the client subscriptions will be maintained by the EPCIS
resource and not burden the Discovery Service.

Management
The persistent data on the Discovery Service requires management. Client subscriptions
should be self-managing with automated removal of redundant state information. Discovery
Services may also provide automated retention management for the Discovery Service EPC
records or routing table entries. For security policies tools should be provided to manage
security across multiple Discovery Services, EPCIS instances and other resources.

Transient/Session State on the Discovery Service
The use of the Discovery Service by a client should result in minimal state information being
retained for the minimal amount of time. Ideally, the Discovery Service should handle the
client request without further communication with onward services. Such onward
communication necessitates the persistence of state for managing the transaction and the
return communication. This should be considered if opting for a Query Propagation model
that routes the EPCIS resource responses.

Transaction Duration, Transparency & Predictability
The client should receive a response to its query with minimal latency. The client should be
able to manage its communication with the Discovery Service and other services. This
typically means that each communication should be short and predictable. Ideally the client
should be able to detect failed communications in a timely manner, and retry only the part of
the communication that failed.

In the Directory Service model the client is in the optimum position of controlling a series of
one-to-one communications with the Discovery Service and EPCIS resources. In the Query
Propagation network the EPCIS resources are decoupled from the client (for the request
communication). Thus the client must wait for a time interval to ensure that all EPCIS
resources have an opportunity to respond. It this time interval is too short, the client will not
know which EPCIS resources have failed to respond in order to selectively repeat the
communication.

Caching
Some consideration should be given to the ability for the Discovery Service and the client to
cache information for the improvement of performance. In the Directory model the Discovery
Service already acts as a cache for resource availability information. Once retrieved from the
Discovery Service such information may also be cached by the client for repeated later
connections to the resource. In the Query Propagation model client requests must be routed
to the end resources since there is insufficient information within the Query Propagation
network to serve the request. Any responses obtained by the client may be cached for later
direct communication with the resources, for example if the Query Propagation Network fails.
However, in the Query Propagation model where fine-grained queries are submitted to obtain
service from the EPCIS resources, many resources will remain undiscovered for later queries
about the same EPC if the initial query was too specific, unless the EPCIS resource always
returns a response to identify itself as a potential resource for that EPC, even if it has no
events to provide for that specific query.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 37/38 15 August 2007

Discovery-Service Processing Load
The Discovery Service should be able to handle many simultaneous client communications.
This means that each request should be computed quickly and with minimal computational
effort.

This processing load is affected by the matching of the client request to the Directory records
or network routing tables. It is also affected by the application of security policies. The
provision of additional attributes in the Directory Service records should be carefully
considered. Not only will these attributes increase the complexity of the Directory search, but
also lead to a proliferation of finer-grained security policies if such attributes are restricted to
limited clients.

In the Query Propagation network a similar problem exists with finer-grained routing tables
including additional attributes. Although these allow the filtering of client request traffic and
reduce network bandwidth and load on the EPCIS resource, the load on the network router
will increase.

6. Conclusions
In this document we have discussed a taxonomy of communication models that may be
considered for RFID Discovery Services and wide area RFID information networks. We have
selected some of the more promising models and discussed the benefits and research
challenges associated with each design. In particular the choice should be considered
carefully for its impact on security, performance and scalability.

Although the Directory Service model is a traditional well-proven approach to this type of
problem, its application in RFID architectures poses some unique challenges, particularly on
the confidentiality of EPCIS resources. Key challenges are the delegated control and the
scalable expression, evaluation and enforcement of security policies.

In contrast the Query Propagation model is perhaps a less obvious candidate, but such
routing networks have seen widespread use, for example in peer-to-peer content retrieval
systems. Such networks face similar challenges both within and outside an RFID context.
Honey Pots are often used to gather client information and the injection of false information
into these networks is a widespread problem. Thus, the challenge is around the security of
resource registration and policing resource behaviour.

7. Bibliography
[1] Carzaniga, A.; Rosenblum, D. S. & Wolf, A. L. Achieving Scalability and

Expressiveness in an Internet-Scale Event Notification Service. Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, 2000,
219-227

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area

event notification service. ACM Transactions on Computer Systems, 19(3):332–383,
2001.

[3] Astley, M.; Auerbach, J.; Bhola, S.; Buttner, G.; Kaplan, M.; Miller, K.; Robert Saccone,

J.; Strom, R.; Sturman, D. C.; Ward, M. J. & Zhao, Y. Achieving Scalability and
Throughput in a Publish/Subscribe System. Technical Report RC23103. IBM Research
Division Thomas J. Watson Research Center, 2004

[4] Gero Mühl, Ludger Fiege, and Peter R. Pietzuch. Distributed Event-Based Systems.

Springer, August 2006.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

Analysis of Discovery Service Models for RFID 38/38 15 August 2007

[5] IBM. Gryphon: Publish/subscribe over public networks. Technical report, IBM T. J.

Watson Research Center, 2001.

[6] G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,

Darmstadt University of Technology, 2002.

[7] W. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification

service with quenching. In Proceedings of the 1997 Australian UNIX Users Group,
Brisbane, Australia, Sept. 1997.

[8] http://www.enum.org/, information request on 2nd of July 2007

[9] Large-Scale Content-Based Publish/Subscribe Systems, Ph. D. Thesis, G. Mühl, T.U.

Darmstadt, 2002. http://elib.tu-darmstadt.de/diss/000274/

[10] http://www.projectliberty.org/

[11] http://www.ibm.com/developerworks/library/specification/ws-fed/

[12] EPCglobal Inc. The EPCglobal Architecture Framework, July 2005.

Building Radio frequency IDentification for the Global
Environment

High level design for Discovery Services

Section C: Scalability of Different Approaches

Authors: University of Cambridge, AT4 wireless, BT Research,
 SAP Research

15 August 2007

This work has been partly funded by the European Commission contract No: IST-2005-
033546

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 2/11 15 August 2007

Revision History
Version Date Author Summary of Changes

0.9 26
th

February
2007

AT4 wireless Scalability of different data storage
implementations with comments and
feedback from Cambridge

0.95 29
th
 June

2007
AT4 wireless Cover page updated

1.0 6
th
 July

2007
Mark Harrison
(Cambridge)

Proof-reading of document

 26
th
 July

2007
Nicholas Pauvre (GS1
France)

Internal Bridge review

1.1 5
th
 August
2007

AT4 wireless Inclusion of comments from internal review

Note

The views expressed in this document are the views of the joint authors

 and the Community is not liable for any use that may be made of the

 information contained herein.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 3/11 15 August 2007

Revision History .. 2
1. Objective .. 4
2. Background.. 4
3. Data storage alternatives.. 4

3.1. Open Hierarchy.. 4
3.1.1. LDAP (Lightweight Directory Access Protocol) ... 4
3.1.2. DNS (Domain Name Service)... 5

3.2. Peer to Peer... 6
3.2.1. DHT (Distributed Hash Tables) .. 6

3.3. Hosted Service .. 7
3.3.1. Search Engine.. 7

4. Comparison.. 8
4.1. Criteria ... 8
4.2. Comparison table... 9

5. Conclusion ..11

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 4/11 15 August 2007

1. Objective

The objective of this report is to study the different options to implement the data storage of
the Discovery Service from the point of view of the scalability of the system. Some other
features that can be useful to evaluate are included as well.

Scalability means the ability to handle growing amounts of data and operations between
them. This definition includes the capacity of the system to evolve in order to manage that
growth.

2. Background

A critical component of the Discovery Service is the data storage component, which stores
information about the list of EPCIS instances that have information about a particular EPC
serial number. Potentially, the data storage component could include a list of EPCIS for
every serial product, meaning that the amount of data to be stored by the Discovery Service
can be immense.

During the design task, some options have been proposed to implement this component, i.e
LDAP, DHT and Search Engines. Their characteristics should be compared with the
requirements for Discovery Services, so that the most promising could be selected for the
discovery service prototype.

3. Data storage alternatives

The data storage options have been classified in three architectures. First, the open
hierarchy architecture represents those models which are oriented to store highly hierarchical
data. Second, the peer to peer architecture is characterized by the participation of multiple
nodes that collaborate in some way to store and retrieve the information. Finally the hosted
service is based in the existence of a web search engine which deals with the storage and
recovery of the information.

3.1. Open Hierarchy

Open hierarchy architecture includes those models that store the information in a tree. Some
features of these models are:

- The content is organized into a hierarchy.
- The query operations have to pass through the root (although they can be cached at

lower levels of the hierarchy).
- Sub trees of the hierarchy can be distributed between different servers.

Two options of open hierarchy architectures are considered and described in more detail,
namely LDAP and DNS.

3.1.1. LDAP (Lightweight Directory Access Protocol)

LDAP is a networking protocol for querying and modifying directory services running over
TCP/IP. LDAP is based on the X.500 standard, but is significantly simpler and more readily
adapted to meet custom needs.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 5/11 15 August 2007

The LDAP protocol is based around the definition of a directory. A directory is a set of
information with similar attributes organized in a logical and hierarchical manner. An LDAP
information directory is a type of database, but it is not a relational database. Databases are
usually designed to perform many changes of their data and LDAP directories are heavily
optimized for read performance, so it is particularly useful for storing information that you
wish to read from many locations.

LDAP servers can replicate either some or all of their data via push or pull methods, allowing
dat to be pushed to remote servers, to increase security or efficiency. The replication
technology is built-in and easy to configure.

Each LDAP server can hold a sub tree of the hierarchy starting from a specific entry. Servers
can store references to other servers too. In this way a query to a server can result in a
reference to other server (referrals) or even the server can contact the other server and
return its results to the client (chaining).

LDAP allows for secure delegation of read and modification authority based on specific
needs using ACLs (Access Control Lists); although this is not part of the LDAP protocol,
many implementations offer this feature.

Integration of Discovery Service data

The integration of the Discovery Service records into the data structure of the LDAP is based
on the decomposition of the pure-identity URN of the EPC serialized ID into the LDAP tree.
Fields of this URN like Company Prefix, Item Reference or Serial Number can be used to
distribute the EPC serialized IDs among the tree structure.

Sub trees representing sets of companies (divided according to the company prefix) can be
separate in different servers to distribute the system. It can use the chaining feature of LDAP
to homogenise the external view of the system and return only the final list of EPCISs.

To mitigate the bottleneck of the root, some servers can store copies of the root server
content using the replication option feature. Load-balancing solutions can be used to
distribute the operations between the servers.

Security can be integrated with the fine grained access control policies of the LDAP
implementation and can be used to limit the access to a particular record.

3.1.2. DNS (Domain Name Service)

DNS stores and associates information with domain names, and translates domain names
into IP addresses. This enables the use of easy to remember names instead of their IP
addresses.

The domain name space is structured as a tree of domain names whose leaves or nodes
have resource records that have information related to the domain name. The tree is divided
into zones of connected nodes that depend on an authoritative DNS server or nameserver.
These zones may change depending on the function of the nameservers.

A resolver is in charge of the lookup of the information associated with nodes. It sends DNS
requests to communicate with the nameservers and receives DNS responses. Usually it is
necessary to communicate with several servers to find the needed information.

A domain name usually consists of several parts separated by dots. In a query each part is
interpreted from right to left using an iterative search procedure. At each iteration, the

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 6/11 15 August 2007

program queries the corresponding DNS server to provide a pointer to the next server that
has to be consulted.

This search procedure has the problem that it produces a high load in the collective root
servers, since every search starts by querying one of these servers, producing a bottleneck.

A way to prevent this load in the servers is to include a cache that will store the response of
the server during a given time to live (TTL). The resolver will consult this cache instead of
querying the server unless the responses in the cache are not useful or have expired. With
this cache mechanism, the resolver does not need to contact the server for the same
information several times.

Changes in data in DNS do not always take effect immediately, so it may happen that
different users can access different versions of the data at the same time until the change
takes effect in all the systems.

To improve the security of the protocol, Domain Name System Security extensions
(DNSSEC) add some security features to the DNS protocol, like origin authentication and
integrity of data and authenticated denial of existence, but the issue is that can reveal the
complete list of zone names.

Integration of Discovery Service data

The integration of the Discovery Service records into the data structure of the DNS is based
on the decomposition of the pure-identity URN of the EPC serial ID into the DNS tree. Fields
of this URN like Company Prefix, Item Reference or Serial Number can be used to distribute
the EPC serialized IDs among the tree structure.

Sub trees representing sets of companies can be separated into different servers to
distribute the system.

To mitigate the bottleneck of the root, some servers can manage copies of the root server
content using replication features. Load-balancing solutions can be used to distribute the
operations between the servers.

To increase security, the DNS Security extensions (DNSSEC) can be used to integrate
security characteristics to the system, but some features like fine grained access control still
have to be developed.

3.2. Peer to Peer

This architecture facilitates the collaboration between the nodes to store and retrieve the
information. Below is a list of some features of this architecture:

- Organization of the nodes can change dynamically to accommodate variations in the
number of nodes and improve the performance and scalability of the system.

- Permits multiple starting points to make operations with the data.

DHT architecture is considered and described in more detail.

3.2.1. DHT (Distributed Hash Tables)

Distributed Hash Tables are decentralized distributed systems that distribute the
management of a key table between the participating nodes. Each node will maintain a
routing table with a list of its neighbours, so that it can route messages to the unique owner

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 7/11 15 August 2007

of a given key. DHT is designed to scale to a large number of nodes and is prepared to have
continuous node arrivals and failures by constructing a structured overlay network.

The key is usually a 160-bit key that can be obtained from a SHA1 hash of more complex
data like filenames. The typical operations are put(key, data) to store data into the DHT and
get(key) to recover data. These operations can be sent to any node of the DHT structure and
it will propagate that operation to the appropriate node.

One of the characteristics of this model is the decentralization, meaning that there is no
central coordinator in the nodes. For this reason, the failure of a node never compromises
the whole system. Another advantage is that the nodes are organized in a way that a node
only needs to coordinate with a few other nodes in the system (usually Θ(log n) with n
participants). Therefore, if a node joins or leaves the system, this does not affect the whole
system. These features provide the system with high scalability and fault tolerance.

The DHT systems can implement replication features to avoid that the failure of a node,
which would make it impossible to access a portion of the data stored by the system. To do
so, each portion of data can be replicated in some cluster nodes, and the system is in charge
of maintaining the coherence of the replicas in a dynamic way: When a node joins the
cluster, it can store replicas of some partitions of the distributed hash table.

DHT systems implement features like load balancing by distributing the operations among a
cluster of nodes, ensure data integrity by keeping up-to-date replicas of each portion of data
and maintain performance optimizing the management of the data stored in the system.

Integration of Discovery Service data

The integration of Discovery Service records into the data structure of the DHT is based on
the use of the pure-identity URN of the EPC serialized ID as the key for the Hash table. The
DHT algorithms deal with the partition of the key space between the nodes.

If the hash function selected to generate the key space returns the same hash key for two
different URN codes, there will be false positives results for queries on these URN codes.

There is no bottleneck in the system because any operation can be initiated in any node, and
the failure of one node can be mitigated with the existence of replications of its data in other
nodes.

Security options like authentication or fine grained access control have to be implemented
into the system.

3.3. Hosted Service

The hosted service architecture uses functionalities of search engines to manage the data to
be stored. Some characteristics of this architecture are:

- The number of attributes to be indexed can be increased easily.
- User can use filters with combinations of attributes of the nodes in the search.
- Search engine can cache EPCIS data to optimize the response time.

Search Engine architecture is considered and described in more detail

3.3.1. Search Engine

A search engine is an information retrieval system prepared to find information stored in a
particular system. The search is produced when it is asked for data that contains or is related

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 8/11 15 August 2007

to specific criteria. The search produces a list of results that match the criteria. It is usually
sorted according to a measure of how much the results are related to the criteria.

Search engines store information about the entries of data. All this information is analyzed to
know how that entry must be indexed in a database that will be used in search operations.
Internally, the most used structure to store the information is the inverted index. The inverted
index is a structure that stores a mapping from words to their locations in a document or a
set of documents, allowing full text search over the document. When a query is done over a
set of words, the list of results is the intersection of documents that appears in the inverted
index for each searched word. This means that the model is optimized to respond to search
queries that include combinations of the record fields.

When a user of a search engine makes a query, usually giving a keyword, the engine looks
for it in the index database to produce the results. The utility of the search engine is
measured with the relevance of the results it gives back.

Integration of Discovery Service data

The integration of the Discovery Service records into the data structure of the search engine
is based on the indexing of each record. When the EPCIS submits a new record, the search
engine stores the index of the pure-identity URN of the EPC serialized ID.

A query on the pure-identity URN will return the URL of the EPCIS instances that have
registered events about it. To use other attributes in the query it is only needed to index them
in the search engine.

The bottleneck caused by the single entry point to the search engine can be mitigated by
replicating it (with clusters, for example). Load-balancing solutions can be used to distribute
the operations between the servers.

Security options like authentication or fine grained access control have to be implemented
into the system.

4. Comparison

This section describes some criteria used in the comparison of the different implementations
for the data storage component of a Discovery Service.

4.1. Criteria

The criteria used have been grouped into three categories: Scalability criteria, data
integration criteria and other criteria that has been considered relevant. The description of
the criteria used is shown below:

Scalability

- Horizontal scalability: This feature deals with how easy is to add new servers and
their impact on the performance of the system.

- Bottleneck: This feature describes the existence of bottlenecks and ways to
bypass them.

- Data Update: This characteristic shows the capability of the model to carry out
multiple change operations (add, update or delete).

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 9/11 15 August 2007

- Data Search: this property depicts the capability of the model to carry out multiple
search operations.

Data integration

- Organization of data: This characteristic describes how the data is organized into
the model. It can be useful to understand the potential bottlenecks of the system
and the options to distribute it.

- Record with fields: This characteristic describes the capacity of the model to
create records of fields to represent each Discovery Service Record.

Other

- Guarantee of result correctness: This property of the models depicts the potential
false positives that can be obtained from the model.

- Access control: This characteristic shows the access control features
implemented by each model.

4.2. Comparison table

Scalability

 LDAP DNS DHT Search Engine

Horizontal
Scalability

Tree architecture
can be extended
by delegating
sub trees to new
servers. Multiple
lookup
processes can
be done in
parallel by
different servers.

Tree architecture
can be extended
by delegating
sub trees to new
servers. Multiple
lookup
processes can
be done in
parallel by
different servers.
Clients use
cache to improve
performance.

System is
prepared to work
with nodes
continuously
leaving or joining
to the space.
Multiple lookup
processes can
be routed in
parallel and can
begin from
different nodes

System is
prepared to
handle many
queries in
parallel. Inverted
index can be
divided across
multiple servers.

Bottleneck There is a
bottleneck in the
root of the
architecture (but
can be
replicated).

There is a
bottleneck in the
root that can be
mitigated by
replicating the
root and using
caches.

There is some
coordination to
support the
structure but the
failure of one
node does not
affect the whole
system.

There is a
bottleneck in the
point of access
to the search
engine (but can
be replicated).

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 10/11 15 August 2007

 LDAP DNS DHT Search Engine

Data Update It is not
optimized for
massive update
operations.

It is not
optimized for
massive update
operations.
When cache is
used the visibility
of changes can
be delayed.

It is optimized for
massive search
and update
operations.

It must update its
index database
when new data
joins the system.

Data Search Search is done in
a hierarchical
manner among
the tree
directory. It is
optimized to
make massive
search
operations.

Search is done in
a hierarchical
manner among
the tree
directory. It is
optimized to
make massive
search
operations using
caches.

It is optimized for
massive search
and update
operations.

It is optimized for
massive search
operations.

Data integration

 LDAP DNS DHT Search Engine

Organization
of data

Data will be
distributed
hierarchically in
the nodes of the
tree.

Data will be
distributed
hierarchically in
the nodes of the
tree.

Uniform
distributed nodes
among a key
space. With no
central
coordination.

Data is stored
internally in the
inverted index
structure.

Record with
fields

Each entry
consists of a set
of attributes.

Each entry
consists of a set
of attributes.

Each entry can
consist of any
information.

Each entry can
consist of any
information.

Other

 LDAP DNS DHT Search Engine

Guarantee of
result
correctness

There is no
possibility of
incorrect
lookups.

There is no
possibility of
incorrect
lookups.

It can return
incorrect results
if two EPC serial
numbers
produce the
same hash code.

It will depend on
the keyword that
users give to
make a search.

BRIDGE – Building Radio frequency IDentification solutions for the Global Environment

DS: Scalability of Different Approaches 11/11 15 August 2007

 LDAP DNS DHT Search Engine

Access control Control access is
already
implemented by
Access Control
Lists (ACLs) at
node level.

There is some
implementation
of Access
Control Lists
(ACLs) at any
level for adding,
updating and
deleting entries,
but not for
searching.

Easy to provide
at least general
access to the
system. Fine
grained controls
have to be
implemented

Easy to provide
at least general
access to the
system. Fine
grained control
have to be
implemented

5. Conclusion

This document describes some models to implement the data storage component of the
Discovery Service. The models have been classified in three architectures, Open Hierarchy,
Peer to Peer and Hosted Service to group models with similar characteristics. It describes
briefly each model and a strategy to integrate it with the Discovery Service data.

The comparison of the models has been made based on some features that have been
previously detailed. Finally the comparison table is presented with the conformity of the
models about each criterion.

The comparison table reflects the level of compliance of each model with the criteria
identified. The final selection of the best implementation will depend on the importance given
to each criterion, but if we consider only the scalability and data integration criteria, the DHT
and LDAP are the more suitable options to implement the data storage component.

	BRIDGE WP02 High level design Discovery Services Introduction.pdf
	BRIDGE WP02 High level design Discovery Services PartA.pdf
	BRIDGE WP02 High level design Discovery Services PartB.pdf
	BRIDGE WP02 High level design Discovery Services PartC.pdf

